当前位置:网站首页>[video denoising] video denoising based on salt with matlab code
[video denoising] video denoising based on salt with matlab code
2022-06-11 18:56:00 【Matlab scientific research studio】
1 brief introduction
Recent works on adaptive sparse and low-rank signal modeling have demonstrated their usefulness, especially in image/video processing applications. While a patch-based sparse model imposes local structure, low-rankness of the grouped patches exploits non-local correlation. Applying either approach alone usually limits performance in various low-level vision tasks. In this work, we propose a novel video denoising method, based on an online tensor reconstruction scheme with a joint adaptive sparse and low-rank model, dubbed SALT. An efficient and unsupervised online unitary sparsifying transform learning method is introduced to impose adaptive sparsity on the fly. We develop an efficient 3D spatio-temporal data reconstruction framework based on the proposed online learning method, which exhibits low latency and can potentially handle streaming videos. To the best of our knowledge, this is the first work that combines adaptive sparsity and low-rankness for video denoising, and the first work of solving the proposed problem in an online fashion. We demonstrate video denoising results over commonly used videos from public datasets. Numerical experiments show that the proposed video denoising method outperforms competing methods.







2 Part of the code
function [Xr, outputParam] = SALT_videodenoising(data, param)%Function for denoising the gray-scale video using SALT denoising%algorithm.%%Note that all input parameters need to be set prior to simulation. We%provide some example settings using function SALT_videodenoise_param.%However, the user is advised to carefully choose optimal values for the%parameters depending on the specific data or task at hand.%% The SALT_videodenoising algorithm denoises an gray-scale video based% on joint Sparse And Low-rank Tensor Reconstruction (SALT) method.% Detailed discussion can be found in%% (1) "Joint Adaptive Sparsity and Low-Rankness on the Fly:% An Online Tensor Reconstruction Scheme for Video Denoising",% written by B. Wen, Y. Li, L, Pfister, and Y Bresler, in Proc. IEEE% International Conference on Computer Vision (ICCV), Oct. 2017.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Inputs -% 1. data : Video data / path. The fields are as follows -% - noisy: a*b*numFrame size gray-scale tensor for denoising% - oracle: path to the oracle video (for% PSNR calculation)%% 2. param: Structure that contains the parameters of the% VIDOSAT_videodenoising algorithm. The various fields are as follows% -% - sig: Standard deviation of the additive Gaussian% noise (Example: 20)% - onlineBMflag : set to true, if online VIDOSAT% precleaning is used.% Outputs -% 1. Xr - Image reconstructed with SALT_videodenoising algorithm.% 2. outputParam: Structure that contains the parameters of the% algorithm output for analysis as follows% -% - PSNR: PSNR of Xr, if the oracle is provided% - timeOut: run time of the denoising algorithm% - framePSNR: per-frame PSNR values%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% parameter & initialization %%%%%%%%%%%%%%% (0) Load parameters and dataparam = SALT_videodenoise_param(param);noisy = data.noisy; % noisy% (1-1) Enlarge the frame[noisy, param] = module_videoEnlarge(noisy, param);if param.onlineBMflagdata.ref = module_videoEnlarge(data.ref, param);end[aa, bb, numFrame] = size(noisy); % height / width / depth% (1-2) parametersdim = param.dim; % patch length, i.e., 8n3D = param.n3D; % TL tensor sizetempSearchRange = param.tempSearchRange;startChangeFrameNo = tempSearchRange + 1;endChangeFrameNo = numFrame - tempSearchRange;blkSize = [dim, dim];slidingDis = param.strideTemporal;numFrameBuffer = tempSearchRange * 2 + 1;param.numFrameBuffer = numFrameBuffer;nFrame = param.nFrame;% (1-3) 2D indexidxMat = zeros([aa, bb] - blkSize + 1);idxMat([[1:slidingDis:end-1],end],[[1:slidingDis:end-1],end]) = 1;[indMatA, indMatB] = size(idxMat);param.numPatchPerFrame = indMatA * indMatB;% (1-4) buffer and output initializationIMout = zeros(aa, bb, numFrame);Weight = zeros(aa, bb, numFrame);buffer.YXT = zeros(n3D, n3D);buffer.D = kron(kron(dctmtx(dim), dctmtx(dim)), dctmtx(nFrame));%%%%%%%%%%%%%%% (2) Main Program - video streaming %%%%%%%%%%%%%tic;for frame = 1 : numFramedisplay(frame);% (0) select G_tif frame < startChangeFrameNocurFrameRange = 1 : numFrameBuffer;centerRefFrame = frame;elseif frame > endChangeFrameNocurFrameRange = numFrame - numFrameBuffer + 1 : numFrame;centerRefFrame = frame - (numFrame - numFrameBuffer);elsecurFrameRange = frame - tempSearchRange : frame + tempSearchRange;centerRefFrame = startChangeFrameNo;end% (1) Input buffertempBatch = noisy(:, :, curFrameRange);extractPatch = module_video2patch(tempBatch, param); % patch extraction% (2) KNN << Block Matching (BM) >>% Options: Online / Offline BMif param.onlineBMflag% (2-1) online BM using pre-cleaned datatempRef = data.ref(:, :, curFrameRange);refPatch = module_video2patch(tempRef, param);[blk_arr, ~, blk_pSize] = ...module_videoBM_fix(refPatch, param, centerRefFrame);else% (2-2) using offline BM resultblk_arr = data.BMresult(:, :, frame);blk_pSize = data.BMsize(:, :, frame);end% (3) Denoising current G_t using LR approximation[denoisedPatch_LR, weights_LR] = ...module_vLRapprox(extractPatch, blk_arr, blk_pSize, param);% (4) Denoising current G_t using Online TL[denoisedPatch_TL, frameWeights_TL, buffer] = ...module_TLapprox(extractPatch, buffer, blk_arr, param);% (5) fusion of the LR + TL + noisy heredenoisedPatch = denoisedPatch_LR + denoisedPatch_TL + extractPatch * param.noisyWeight;weights = weights_LR + frameWeights_TL + param.noisyWeight;% (6) Aggregation[tempBatch, tempWeight] = ...module_vblockAggreagtion(denoisedPatch, weights, param);% (7) update reconstructionIMout(:, :, curFrameRange) = IMout(:, :, curFrameRange) + tempBatch;Weight(:, :, curFrameRange) = Weight(:, :, curFrameRange) + tempWeight;endoutputParam.timeOut = toc;% (3) Normalization and OutputXr = module_videoCrop(IMout, param) ./ module_videoCrop(Weight, param);outputParam.PSNR = PSNR3D(Xr - double(data.oracle));framePSNR = zeros(1, numFrame);for i = 1 : numFrameframePSNR(1, i) = PSNR(Xr(:,:,i) - double(data.oracle(:,:,i)));endoutputParam.framePSNR = framePSNR;end
3 Simulation results


4 reference
[1] Wen B , Li Y , Pfister L , et al. Joint Adaptive Sparsity and Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme for Video Denoising[C]// 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- Project management of workflow and business service on SAP BTP
- Friendly tanks fire bullets
- Combination sum of 39 questions
- Function development of user information management
- SAP BTP 上 workflow 和 Business Service 的 project 管理
- 制造出静态坦克
- 疫情下远程办公沟通心得|社区征文
- leetcode:926. Flip the string to monotonically increasing [prefix and + analog analysis]
- Kubernetes binary installation (v1.20.15) (IX) closeout: deploy several dashboards
- Téléchargement et téléchargement des fichiers nécessaires au développement
猜你喜欢

Financial bank_ Introduction to collection system
![Cf:g. count the trains [sortedset + bisect + simulation maintaining strict decreasing sequence]](/img/0b/1d3cd06e3d593a997a993a4d96e441.png)
Cf:g. count the trains [sortedset + bisect + simulation maintaining strict decreasing sequence]

视觉SLAM十四讲笔记-10-2

给你一个项目,你将如何开展性能测试工作?

Cf:b. array determinations

2022-2023年西安交通大学管理学院MEM提前批面试网报通知

Niu Ke brushes the question - no two

2023年西安交通大学管理学院MPAcc提前批面试网报通知

On the sequence traversal of binary tree

The Economist: WTO MC12 restarts the digital economy and becomes the core engine of global economic recovery and growth
随机推荐
cf:B. Array Decrements【模拟】
今天睡眠质量记录60分
关于富文本储存数据库格式转译问题
leetcode:926. 将字符串翻转到单调递增【前缀和 + 模拟分析】
leetcode:926. Flip the string to monotonically increasing [prefix and + analog analysis]
Deploy a go MSSQL API endpoint on SAP kyma
Today's sleep quality record is 60 points
The Economist: WTO MC12 restarts the digital economy and becomes the core engine of global economic recovery and growth
全志科技T3開發板(4核ARM Cortex-A7)——MQTT通信協議案例
Uni app Muke hot search project (I) production of tabbar
Add your favorite background music
动态爆炸效果
【图像分割】基于马尔可夫随机场实现图像分割附matlab代码
为何TI的GPMC并口,更常被用于连接FPGA、ADC?我给出3个理由
用户组的操作
Construct enemy tanks
求数据库设计毕业信息管理
Leetcode: sword finger offer 56 - ii Number of occurrences of numbers in the array II [simple sort]
Overall process of software development
在 SAP Kyma 上部署一个 Go MSSQL API Endpoint