当前位置:网站首页>204. Count Primes

204. Count Primes

2022-08-03 16:38:00 51CTO


Description:

Count the number of prime numbers less than a non-negative number, n.

Credits:
Special thanks to @mithmatt for adding this problem and creating all test cases.

      
      
public class Solution {
public int countPrimes(int n) {
boolean[] a = new boolean[n];
for(int i=2; i*i<n; i++) {
if(!a[i]) {
for(int j=i; i*j<n; j++) {
a[i*j] = true;
}
}
}
int c=0;

for(int i=2; i<n; i++) {
if(a[i] == false)
++c;
}
return c;
}
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
      
      
/**
* @param {number} n
* @return {number}
*/
var countPrimes = function(n) {
var arr = new Array(n).fill(true);
for (var i = 0; i < Math.sqrt(n); i++) {
if (i < 2) {
arr[i] = false;
}
if (arr[i]) {
for (var j = i * i; j < n; j += i) {
arr[j] = false;
}
}
}
return arr.filter(i => i === true).length;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
      
      
public class Solution {
int count = 1;
boolean[] primes;
public int countPrimes(int n) {
if(n < 3) {
return 0;
}
primes = new boolean[n];
int sqrtn = (int)Math.sqrt(n) + 1;

for(int i=3; i<sqrtn; i+=2) {
if(!primes[i]) {
//ideally count updates here for earlier numbers
for(int j=i*i; j<n; j+=i) {
primes[j] = true;
}
}
}

for(int i=3; i<n; i+=2) {
if(!primes[i]) {
count++;
}
}
return count;
}
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.


原网站

版权声明
本文为[51CTO]所创,转载请带上原文链接,感谢
https://blog.51cto.com/u_15740726/5540629