当前位置:网站首页>Cann operator: using iterators to efficiently realize tensor data cutting and blocking processing
Cann operator: using iterators to efficiently realize tensor data cutting and blocking processing
2022-07-04 19:53:00 【InfoQ】
Mission scenarios and objectives
Conventional scheme :
Prepare knowledge and analysis
1. step
2. iterator
template <typename T>
class PositionIterator {
public:
PositionIterator(){};
~PositionIterator(){};
PositionIterator(std::vector<T> stt, std::vector<T> sh) {
if (stt.size() != sh.size()) {
PositionIterator();
} else {
for (unsigned int i = 0; i < sh.size(); i++) {
if (stt[i] >= sh[i]) {
PositionIterator();
}
}
pos_ = stt;
shape_ = sh;
}
}
PositionIterator operator++() {
pos_[shape_.size() - 1] += 1;
for (unsigned int i = shape_.size() - 1; i > 0; i--) {
if (pos_[i] / shape_[i] != 0) {
pos_[i - 1] += pos_[i] / shape_[i];
pos_[i] = pos_[i] % shape_[i];
}
}
return *this;
}
bool End() {
if (pos_[0] != shape_[0]) {
return false;
}
return true;
}
std::vector<T> GetPos() { return pos_; }
std::vector<T> GetShape() { return shape_; }
private:
std::vector<T> pos_;
std::vector<T> shape_;
};Diagonal The realization of operators

template <typename T>
uint32_t DiagonalCpuKernel::DoComputeType(CpuKernelContext &ctx,
const int64_t &offset,
const int64_t &dim1,
const int64_t &dim2) {
// Get the inuput and output
Tensor *input_x = ctx.Input(0);
Tensor *y = ctx.Output(0);
// Get some information of input
auto x_shape = input_x->GetTensorShape();
std::vector<int64_t> x_shape_ = x_shape->GetDimSizes();
const int64_t x_dim = x_shape->GetDims();
auto dataptr = reinterpret_cast<T *>(ctx.Input(0)->GetData());
auto y_dataptr = reinterpret_cast<T *>(y->GetData());
// Compute
// First, calculate the number of diagonal elements
int64_t dsize = OffsetSize(offset, dim1, dim2, x_shape_);
// To generate the input Tensor Step vector of x_stride
std::vector<int64_t> x_stride = ConstructStride<int64_t>(x_shape_);
// Discussion by situation ,2 Peacekeeping greater than 2 The d
if (x_dim != N2) {
//set the vx_shape and vx_stride
// Generate x_shape and x_stride Remove from dim1 and dim2 Corresponding to vx_shape And vx_stride
std::vector<int64_t> vx_shape, vx_stride;
for (unsigned int tmp_dim = 0; tmp_dim < x_shape_.size(); tmp_dim++) {
if (tmp_dim != dim1 && tmp_dim != dim2) {
vx_shape.push_back(x_shape_[tmp_dim]);
vx_stride.push_back(x_stride[tmp_dim]);
}
}
// set the y_shape, y_stride, vy_stride
// Generate output Tensor Shape and step vector of :y_shape and y_stride
std::vector<int64_t> y_shape = vx_shape;
y_shape.push_back(dsize);
std::vector<int64_t> y_stride =
ConstructStride<int64_t>(y_shape);
// Generate output Tensor Out of the last one-dimensional step vector :vy_stride
std::vector<int64_t> vy_stride = y_stride;
vy_stride.pop_back();
// Read diagonal data
std::vector<int64_t> v_start(vx_shape.size(), 0);
for (PositionIterator<int64_t> myiter(v_start, vx_shape); !myiter.End();
++myiter) {
// Use the iterator to determine the division dim1 and dim2 Position coordinates of dimensions
auto p = myiter.GetPos();
// The basic position values of input and output are calculated by step vector and position coordinates base_pos1 and outbase_pos
int64_t base_pos1 = MulSum<int64_t>(p, vx_stride);
int64_t outbase_pos = MulSum<int64_t>(p, vy_stride);
for (int i = 0; i < dsize; i++) {
// Combined with the foundation position value calculated above , Yes dim1 and dim2 The corresponding dimension determines the position of diagonal elements , And assign it to the output data address (get_data It involves taking elements from the upper diagonal or the lower diagonal , It does not affect the understanding of the function of iterators )
int64_t base_pos2 = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[outbase_pos + i] =
get_data(base_pos1 + base_pos2, offset, arr, dataptr);
}
}
} else {
for (int i = 0; i < dsize; i++) {
int64_t base_pos = i * (x_stride[dim1] + x_stride[dim2]);
int64_t arr[N2] = {x_stride[dim1], x_stride[dim2]};
y_dataptr[i] = get_data(base_pos, offset, arr, dataptr);
}
}
return KERNEL_STATUS_OK;
}Other uses of iterators
for (position_iterator<int64_t> mit(v_start, v_shape); !mit.end(); ++mit) {
auto p = mit.get_pos();
int axis_len = input_shape_[tmp_axis];
std::vector<ValueIndex<T>> data_(axis_len);
int base_pos = mul_sum<int64_t>(p, v_stride);
for (int32_t i = 0; i < axis_len; i++) {
data_[i].value = x_dataptr[base_pos + i * input_stride[tmp_axis]];
data_[i].index = i;
}
std::vector<std::vector<T1>> data_;
for (int64_t i = 0; i < dim0; i++) {
std::vector<T1> tmp_v1;
for (PositionIterator<int64_t> mit(v_start, v_shape); !mit.End(); ++mit) {
auto pos = mit.GetPos();
tmp_v1.push_back(
x_dataptr[MulSum<int64_t>(pos, v_stride) + i * input_stride[axis]]);
}
data_.push_back(tmp_v1);
}边栏推荐
- 双冒号作用运算符以及命名空间详解
- HDU 6440 2018 Chinese college student program design network competition
- The page element is vertically and horizontally centered, realizing the vertical and horizontal centering of known or unknown width.
- English grammar_ Noun - use
- An example of multi module collaboration based on NCF
- Upgrade the smart switch, how much is the difference between the "zero fire version" and "single fire" wiring methods?
- PointNeXt:通过改进的模型训练和缩放策略审视PointNet++
- Kotlin basic data type
- Dark horse programmer - software testing - stage 07 2-linux and database -09-24-linux command learning steps, wildcards, absolute paths, relative paths, common commands for files and directories, file
- 【毕业季】绿蚁新醅酒,红泥小火炉。晚来天欲雪,能饮一杯无?
猜你喜欢

Detailed explanation of the binary processing function threshold() of opencv

Swagger suddenly went crazy

Cbcgpprogressdlg progress bar used by BCG

YOLOv5s-ShuffleNetV2

C# 使用StopWatch测量程序运行时间

黑马程序员-软件测试--08阶段2-linux和数据库-23-30-进程端口相关,修改文件权限,端口号信息的获取,程序和进程相关操作,linux命令案例

华为nova 10系列支持应用安全检测功能 筑牢手机安全防火墙

Explore the contour drawing function drawcontours() of OpenCV in detail with practical examples

Mysql database basic operation -ddl | dark horse programmer

There are multiple divs in the large div, which are displayed on the same line. After overflow, scroll bars are generated without line breaks
随机推荐
kotlin 条件控制
Jetpack compose tutorial
Multi table operation inner join query
Educational Codeforces Round 22 E. Army Creation
做社交媒体营销应该注意些什么?Shopline卖家的成功秘笈在这里!
SSRS筛选器的IN运算(即包含于)用法
There are multiple divs in the large div, which are displayed on the same line. After overflow, scroll bars are generated without line breaks
1009 Product of Polynomials(25 分)(PAT甲级)
TCP waves twice, have you seen it? What about four handshakes?
Explore the contour drawing function drawcontours() of OpenCV in detail with practical examples
HMM隐马尔可夫模型最详细讲解与代码实现
kotlin 基本数据类型
Explicit random number
Multi table operation - external connection query
1005 spell it right (20 points) (pat a)
kotlin 类和对象
1007 maximum subsequence sum (25 points) (PAT class a)
HDU 6440 2018中国大学生程序设计网络选拔赛
JVM系列之对象的创建
Personal thoughts on Architecture Design (this article will be revised and updated continuously later)