当前位置:网站首页>Matlab simulation of radar imaging 1 - LFM signal and its spectrum
Matlab simulation of radar imaging 1 - LFM signal and its spectrum
2022-07-28 06:27:00 【I have two candies】
1 Theoretical basis
1.1 Chirp The signal
LFM (LFM) Signal is commonly used in radar pulse compression , Also called chirp The signal , The time domain expression is ( Plural form ):
s ( t ) = r e c t ( t T ) × e j 2 π ( f c + K 2 t 2 ) s(t) = rect(\frac{t}{T})\times e^{j 2 \pi (f_c + \frac{K}{2} t^2)} s(t)=rect(Tt)×ej2π(fc+2Kt2)
among , f c f_c fc Carrier frequency , r e c t ( t T ) rect(\frac{t}{T}) rect(Tt) The width is T T T Rectangular wave signal , K = B T K=\frac{B}{T} K=TB It's the FM slope slope
2. Simulation
In the program , Set up f c = 0 f_c=0 fc=0, T = 1 0 − 6 s T=10^{-6}s T=10−6s, Signal bandwidth B = 30 M H z B=30MHz B=30MHz
First, you need to set the sampling frequency F s F_s Fs, At least of the signal bandwidth 2 Multiple , Further sampling interval T s = 1 F s Ts=\frac{1}{F_s} Ts=Fs1, The number of sampling points is N = T T s N=\frac{T}{T_s} N=TsT
T = 10e-6; % Pulse duration 10us
B = 30e6; % Bandwidth 30MHz
K = B / T; % chirp slope
Fs = 2 * B; % sampling frequency
Ts = 1 / Fs; % sampling spacing
N = T / Ts; % Number of samples
Then generate a signal , Use linspace Function generating time series
linspace(start, end, N) For from start Start , To end end ( contain end) Generate evenly spaced N A little bit
%% signals
t = linspace(-T/2, T/2, N);
St = exp(1i*pi*K*t.^2); % s(t)
The signal FFT ( Click to view the principle )
freq = linspace(-Fs/2, Fs/2, N);
f = fftshift(abs(fft(St));
Complete procedures and results
clear; clc;
set(0,'defaultfigurecolor', 'w')
%% parameters
T = 10e-6; % Pulse duration 10us
B = 30e6; % Bandwidth 30MHz
K = B / T; % chirp slope
Fs = 2 * B; % sampling frequency
Ts = 1 / Fs; % sampling spacing
N = T / Ts; % Number of samples
%% signals
t = linspace(-T/2, T/2, N);
St = exp(1i*pi*K*t.^2); % s(t)
%% plot LFM signal
figure(1)
subplot(2, 1, 1)
plot(t*1e6, real(St), 'k', 'LineWidth', 1.5);
xlabel('Time in u sec');
title('Real part of chirp signal');
grid on; axis tight;
%% plot chirp FFT
subplot(2, 2, 3)
freq = linspace(-Fs/2, Fs/2, N);
plot(freq*1e-6, fftshift(abs(fft(St))), 'k', 'LineWidth', 1.5);
xlabel('Frequency in MHz');
title('Magnitude spectrum of chirp signal');
grid on; axis tight;
subplot(2, 2, 4)
freq = linspace(-Fs/2, Fs/2, N);
plot(freq*1e-6, -pi/K*freq.^2 + pi/4, 'k', 'LineWidth', 1.5);
xlabel('Frequency in MHz');
title('Magnitude spectrum of chirp signal');
grid on; axis tight;

There is a small problem , adopt
phase = angle(sFFT);
angle(1+1.732i)/3.14*180 % 60
The obtained phase spectrum is similar to noise , The reason is that the phase of the signal may exceed 2 π 2\pi 2π, But the function angle It calculates the phase according to the real part and the imaginary part , Only return [ − π , + π ] [-\pi, +\pi] [−π,+π] Internal value , Cause phase blur , So you will get a phase spectrum similar to noise .
Related content : Radar imaging
边栏推荐
猜你喜欢

Agilent安捷伦 E5071测试阻抗、衰减均正常,惟独串扰NG?---修复方案

mixup_ ratio

Transformer self attention mechanism and complete code implementation

IMS-FACNN(Improved Multi-Scale Convolution Neural Network integrated with a Feature Attention Mecha

Cronbach’s α?KMO系数?因子载荷?史上最易懂的问卷信效度分析教程!!!(SPSS和AMOS)

初学者进行传感器选型

【YOLOv5】环境搭建:Win11 + mx450

CLIP Learning Transferable Visual Models From Natural Language Supervision

Briefly introduce EMD decomposition, Hilbert transform and spectral method

Varistor design parameters and classic circuit recording hardware learning notes 5
随机推荐
CLIP Learning Transferable Visual Models From Natural Language Supervision
IMS-FACNN(Improved Multi-Scale Convolution Neural Network integrated with a Feature Attention Mecha
Learning notes on hardware circuit design 2 -- step-down power circuit
Agilent安捷伦 E5071测试阻抗、衰减均正常,惟独串扰NG?---修复方案
Bag of tricks training convolution network skills
VS Code 基础配置与美化
雷达成像 Matlab 仿真 4 —— 距离分辨率分析
mixup_ ratio
Mae mask self encoding is scalable learning
VB OCX applied to Web
AEM online product promotion conference - Cable certification tester
Overall understanding of PLC
Talk about the "hybrid mode" of esxi virtual switch and port group
npm yarn相关的操作
Esxi on ARM v1.2 (updated in November 2020)
Design and analysis of contactor coil control circuit
vi和vim命令
Arduino reads the analog voltage_ How mq2 gas / smoke sensor works and its interface with Arduino
PT 基于Multi Voltage的Physical Aware
TVs tube parameters and selection