当前位置:网站首页>Matlab simulation of radar imaging 1 - LFM signal and its spectrum
Matlab simulation of radar imaging 1 - LFM signal and its spectrum
2022-07-28 06:27:00 【I have two candies】
1 Theoretical basis
1.1 Chirp The signal
LFM (LFM) Signal is commonly used in radar pulse compression , Also called chirp The signal , The time domain expression is ( Plural form ):
s ( t ) = r e c t ( t T ) × e j 2 π ( f c + K 2 t 2 ) s(t) = rect(\frac{t}{T})\times e^{j 2 \pi (f_c + \frac{K}{2} t^2)} s(t)=rect(Tt)×ej2π(fc+2Kt2)
among , f c f_c fc Carrier frequency , r e c t ( t T ) rect(\frac{t}{T}) rect(Tt) The width is T T T Rectangular wave signal , K = B T K=\frac{B}{T} K=TB It's the FM slope slope
2. Simulation
In the program , Set up f c = 0 f_c=0 fc=0, T = 1 0 − 6 s T=10^{-6}s T=10−6s, Signal bandwidth B = 30 M H z B=30MHz B=30MHz
First, you need to set the sampling frequency F s F_s Fs, At least of the signal bandwidth 2 Multiple , Further sampling interval T s = 1 F s Ts=\frac{1}{F_s} Ts=Fs1, The number of sampling points is N = T T s N=\frac{T}{T_s} N=TsT
T = 10e-6; % Pulse duration 10us
B = 30e6; % Bandwidth 30MHz
K = B / T; % chirp slope
Fs = 2 * B; % sampling frequency
Ts = 1 / Fs; % sampling spacing
N = T / Ts; % Number of samples
Then generate a signal , Use linspace Function generating time series
linspace(start, end, N) For from start Start , To end end ( contain end) Generate evenly spaced N A little bit
%% signals
t = linspace(-T/2, T/2, N);
St = exp(1i*pi*K*t.^2); % s(t)
The signal FFT ( Click to view the principle )
freq = linspace(-Fs/2, Fs/2, N);
f = fftshift(abs(fft(St));
Complete procedures and results
clear; clc;
set(0,'defaultfigurecolor', 'w')
%% parameters
T = 10e-6; % Pulse duration 10us
B = 30e6; % Bandwidth 30MHz
K = B / T; % chirp slope
Fs = 2 * B; % sampling frequency
Ts = 1 / Fs; % sampling spacing
N = T / Ts; % Number of samples
%% signals
t = linspace(-T/2, T/2, N);
St = exp(1i*pi*K*t.^2); % s(t)
%% plot LFM signal
figure(1)
subplot(2, 1, 1)
plot(t*1e6, real(St), 'k', 'LineWidth', 1.5);
xlabel('Time in u sec');
title('Real part of chirp signal');
grid on; axis tight;
%% plot chirp FFT
subplot(2, 2, 3)
freq = linspace(-Fs/2, Fs/2, N);
plot(freq*1e-6, fftshift(abs(fft(St))), 'k', 'LineWidth', 1.5);
xlabel('Frequency in MHz');
title('Magnitude spectrum of chirp signal');
grid on; axis tight;
subplot(2, 2, 4)
freq = linspace(-Fs/2, Fs/2, N);
plot(freq*1e-6, -pi/K*freq.^2 + pi/4, 'k', 'LineWidth', 1.5);
xlabel('Frequency in MHz');
title('Magnitude spectrum of chirp signal');
grid on; axis tight;

There is a small problem , adopt
phase = angle(sFFT);
angle(1+1.732i)/3.14*180 % 60
The obtained phase spectrum is similar to noise , The reason is that the phase of the signal may exceed 2 π 2\pi 2π, But the function angle It calculates the phase according to the real part and the imaginary part , Only return [ − π , + π ] [-\pi, +\pi] [−π,+π] Internal value , Cause phase blur , So you will get a phase spectrum similar to noise .
Related content : Radar imaging
边栏推荐
猜你喜欢

(PHP graduation project) based on PHP student daily behavior management system access

Weight decay

Low power design isolation cell

机器学习笔记 5 —— Logistic Regression

clickhouse建宽表多少列最合适?

天线效应解决办法

set_ case_ analysis

Fluke dtx-1800 and its accessories dtx-cha002 channel adapter channel replacement RJ45 socket notes

Bag of Tricks训练卷积网络的技巧

set_false_path
随机推荐
Talk about the "hybrid mode" of esxi virtual switch and port group
Shuffle Net_ v1-shuffle_ v2
Perl入门学习(十一)文件操作
Transformer 自注意力机制 及完整代码实现
How to test industrial Ethernet cables (using fluke dsx-8000)?
ClickHouse 中的公共表表达式CTE
AEM online product promotion conference - Cable certification tester
mysql删表不删库
Fluke dtx-sfm2 single mode module of a company in Hangzhou - repair case
PyTorch 学习笔记 1 —— Quick Start
Bert bidirectional encoder based on transformer
EXFO 730C光时域反射计只有iOLM光眼升级OTDR(开通otdr权限)
(PHP graduation project) based on PHP student daily behavior management system access
(PHP graduation project) based on PHP online travel website management system to obtain
set_clock_groups
低功耗设计-isolation cell
Bag of Tricks训练卷积网络的技巧
(PHP graduation project) based on thinkphp5 community property management system
ICC2(一)Preparing the Design
T-sne dimension reduction visualization