当前位置:网站首页>Image fusion GANMcC study notes
Image fusion GANMcC study notes
2022-08-01 21:32:00 【qq_46165876】
GANMcC: A Generative Adversarial Network with Multi-classification Constraints for Infrared and Visible Image FusionArticle study notes
模型结构
生成器的结构分为gradient path与Contrast path
梯度信息表示的是纹理信息
for gradient paths,连接two visible lights+an infrared image作为输入
Contrast information用亮度表示
For contrast paths,连接a visible light+Two infrared images作为输入
Indicates the probability that the input image is a visible light imagePvisand the probability that the input is an infrared imagePir.When the discriminator determines to fuse the images,The generator expects both probabilities to be large,也就是说,Let the discriminator consider that the fused image is both visible and infrared.相反,判决器Dedicated to accurately determine fused images as fake data,即Make both probabilities smaller at the same time.这样,An adversarial game is established between the generator and the discriminator.当判决器Calculate the fused imagePvis和Pir都很大时,This time is considered to be an information-balanced fused image.
生成器损失函数
生成器损失函数L-G.
其中rBalancing coefficient for balancing adversarial loss and content loss
对抗损失
对抗损失L-Gadv定义如下
其中dis the discriminator that determines the fused imageprobability label.在我们的工作中,The discriminator is an output1 × 2A multiclassifier of probability vectors.
因此,D( )[1]表示向量的第一项,即The probability that the fused image is a visible imagePvis.
同样,D( )[2]表示向量的第二项,即The probability that the fused image is an infrared imagePir.
值得注意的是,We use the same token for both probabilitiesd,So the discriminator has the same probability to determine whether the fused image is an infrared image or a visible light image.这里,Because the generator expects that the discriminator cannot distinguish between fused images and real data,所以d被设置为1.
内容损失
内容损失 由四部分组成,That is the main strength loss、main gradient loss、Auxiliary Gradient Loss and Auxiliary Strength Loss.L_con定义如下
其中β()为常数,需要进行调整,In order to realize the primary and secondary relationship between these items.The gradient loss term is usually smaller than the strength loss term,因此需要调整β()so that they are equally important in the optimization process.因此,β()The setting rules can be summarized as :
其中Major strength lossL_int-main定义如下
其中Ifusedis the fused image,可以形式化为G(Ivis,Iir),Iiris the infrared source image.
Main gradient lossL_grad-main定义如下:
Because the infrared image also has some texture details,Visible light images also contain contrast information.
因此,We propose the concept of auxiliary loss.也就是说,We construct the fusion between the image and the infrared imageAuxiliary gradient loss * Lgradaux*,and between the fusion image and the visible light imageAuxiliary strength lossLintaux,如下:
判别器损失函数
The discriminator is a multi-classifier,Its loss function must continuously improve its discriminative ability,And can effectively identify what is an infrared image or a visible light image.
鉴别器的损失函数由三部分组成,即可见光图像、红外图像和融合图像judgment loss.We denote these three losses as LDvis、LDir和LDfused.那就是:
Take into account the discriminator output1 × 2矢量,我们得到Pvis = D(x)[1]和Pir = D(x)[2].当输入是可见光图像时,预期pvi应该接近1,Pir应该接近0.The corresponding loss is defined as :
其中a1和a2为概率标签,a1设为1,a2设为0.也就是说,When inputting visible light images,There is a high probability that the discriminator wants to judge that it is a visible light image,The probability of infrared images is small.
类似地,Infrared loss term定义为:
其中b1设置为0,b2设置为1.
最后,when the input image is融合图像时,The loss function is formulated as :
其中c是The discriminator determines the probabilistic labels of the fused images,应设置为0.
同样,We also use the same label for both probabilitiesc来达到平衡.
也就是说,in the view of the discriminator,The fused image is a pseudo-visible image and a pseudo-infrared image to the same extent.
改进的点
It is heavily affected by shadows in some scenes,This results in unnatural shadow transitions in the fusion result.
边栏推荐
- C陷阱与缺陷 第8章 建议与答案 8.1 建议
- C Pitfalls and Defects Chapter 7 Portability Defects 7.8 Size of Random Numbers
- Appendix A printf, varargs and stdarg a. 2 use varargs. H to realize the variable argument list
- C专家编程 第1章 C:穿越时空的迷雾 1.1 C语言的史前阶段
- 多商户商城系统功能拆解19讲-平台端发票管理
- 基于php旅游网站管理系统获取(php毕业设计)
- C专家编程 第1章 C:穿越时空的迷雾 1.3 标准I/O库和C预处理器
- Jmeter实战 | 同用户重复并发多次抢红包
- ORI-GB-NP半乳糖介导冬凌草甲素/姜黄素牛血清白蛋白纳米粒的研究制备方法
- C陷阱与缺陷 附录B Koenig和Moo夫妇访谈
猜你喜欢
Realize the superposition display analysis of DWG drawing with CAD in Cesium
An online JVM FullGC made it impossible to sleep all night and completely crashed~
测试开发人均年薪30w+?软件测试工程师如何进阶拿到高薪?
LeetCode·每日一题·1374.生成每种字符都是奇数个的字符串·模拟
Anacoda的用途
移植MQTT源码到STM32F407开发板上
ISC2022 HackingClub white hat summit countdown 1 day!Most comprehensive agenda formally announced!Yuan universe, wonderful!
groupByKey和reduceBykey的区别
Shell编程条件语句
Jmeter combat | Repeated and concurrently grabbing red envelopes with the same user
随机推荐
C Expert Programming Chapter 1 C: Through the Fog of Time and Space 1.4 K&R C
LeetCode
方舟生存进化是什么游戏?好不好玩
可视化——Superset使用
牛血清白蛋白-葡聚糖-叶黄素纳米颗粒/半乳糖白蛋白磁性阿霉素纳米粒的制备
方舟:生存进化PVE模式和PVP模式
C pitfalls and pitfalls Chapter 8 Suggestions and answers 8.2 Answers
C陷阱与缺陷 第5章 库函数 5.5 库函数signal
移植MQTT源码到STM32F407开发板上
Scala练习题+答案
15 分钟带你入门 Grafana
关于npm的那些事儿
(七)《数电》——CMOS与TTL门电路
R语言进行相关的操作
C Pitfalls and Defects Chapter 7 Portability Defects 7.9 Case Conversion
如何让定时器在页面最小化的时候不执行?
Flink集群搭建
Realize the superposition display analysis of DWG drawing with CAD in Cesium
淘宝获取收货地址列表的 API
Transplant MQTT source code to STM32F407 development board