当前位置:网站首页>LeetCode third topic (the Longest Substring Without Repeating Characters) trilogy # 3: two optimization
LeetCode third topic (the Longest Substring Without Repeating Characters) trilogy # 3: two optimization
2022-08-04 00:33:00 【InfoQ】
欢迎访问我的GitHub
- 本文是《LeetCode第三题(Longest Substring Without Repeating Characters)三部曲》的第三篇,The previous two articles laid out the ideas and wrote them outJava代码,虽然在LeetCodeSubmitted by the website,但是成绩并不理想,40multi-millisecond speed,There is a big gap with many excellent programs,Let's optimize the code together today,提升速度;
Trilogy full link
- 《LeetCode第三题(Longest Substring Without Repeating Characters)三部曲之一:解题思路》;
- 《LeetCode第三题(Longest Substring Without Repeating Characters)三部曲之二:编码实现》;
- 《LeetCode第三题(Longest Substring Without Repeating Characters)三部曲之三:两次优化》;
原有代码
- Here's a look back at the original code:
public int lengthOfLongestSubstring(String s) {
//窗口的起始位置,until the end of the window,longest record
int left = 0, right = 0, max = 0;
//Indicates what values are in the window
Set<Character> set = new HashSet<>();
while (right < s.length()) {
//例如"abcdc",inside the window is"abcd",此时right等于[4],
//found in the windowarray[right]的值,Just shrink the left side of the window,
//No shrinking to the windowarray[right]的值为止,
//当leftGet bigger all the way,直到left=3的时候,There is no longer in the windowarray[right]的值了
if (set.contains(s.charAt(right))) {
//If the window is"abc",当前是"c",Then the code below will only work"a"删除,left加一,再次循环
//And a new cycle is still found"c"还在set中,就再把"b"删除,left再加一...
set.remove(s.charAt(left++));
} else {
//Not in the windowarray[right]的时候,就把array[right]的值放入set中,Indicates what values are in the current window
set.add(s.charAt(right++));
if ((right - left) > max) {
max = right - left;
}
}
}
return max;
}
第一次优化
- 这次的重点是HashSet对象,This object holds all the elements in the window,Check before adding a new elementHashSet中是否存在该元素;
- 如下图所示,代码中通过set.add和set.remove方法将HashSetThe content in the window is always consistent with the content in the window:
- 优化前:Determines whether an element is in the window,The current approach isHashSet中为准,When it is determined that an element is to be removed from the window,就调用HashSet的remove方法从HashSet中删除;
- The above code can be optimized,It is not necessary to execute after optimizationHashSet的remove方法,The specific logic is to useHashMap替代HashSet,HashMap的key是字符串的元素,valueis the position of the element in the array,举个例子,当left=1,right=3时,The overall effect is as shown below,HashMap中已经保存了"a"、"b"、"c"Three elements askey,而valueare their subscripts in the array:
- Now to check the subscript in the array is4的元素"b":以"b"为key查找HashMap,If it does not exist, it means not in the window,如果存在,就用对应的value=1去和left比较,如果小于leftIt means not in the window,如果大于或者等于leftis displayed in the window,如下图所示:
- 这里要注意的是:hashmap中任意一个value,Indicates that an element is present整个数组中的位置,instead of the position in the window,Because the program will not be righthashmap做remove操作;
- Then analyze the graph above,"b"After the element is found to exist in the window,除了将left调整为2,right调整为4,还要调用HashMap的put方法,将"b"The position of the element is changed from the original1更新为4;
- There is another optimization point:Suppose it is in the current window"abc",And the checked element is "b",之前的代码中,To execute the loop twice:先删除"a",left加一,再删除"b",left再加一,现在用了HashMap就能得到"b"的位置,直接将left改为"b"的下一个位置即可,There is no need to execute the loop twice;
- The above is the optimization idea,用HashMap取代HashSet,不再执行remove方法,The tweaks to the code are not that big,The adjusted full code is as follows:
public int lengthOfLongestSubstring(String s) {
int left =0, right =0, max = 0;
Map<Character,Integer> map = new HashMap<>();
while (right<s.length()){
//mapIf it does not exist, it means that it is not in the window
if(map.containsKey(s.charAt(right))){
int pos = map.get(s.charAt(right));
//map中如果存在,再检查value和left,to determine whether it is in the window
if(pos>=left){
//Note that this is another optimization point,Suppose it is in the current window"abc",And the checked element is "b",
//之前的代码中,To execute the loop twice:先删除"a"再删除"b",
//现在用了HashMap就能得到"b"的位置,直接将left改为"b"的下一个位置即可,There is no need to execute the loop twice
left = pos + 1;
}
}
map.put(s.charAt(right), right++);
if((right-left)>max){
max = right-left;
}
}
return max;
}
- Submit the above code to LeetCode,This time the result is27毫秒,Much better than before,如下图:
- 然而,This result is still mediocre,Because it can still be optimized,Then optimize again;
第二次优化
- The first optimization point is eliminationremove方法和while循环次数,The second optimization is forHashMap,Each time a new element is processed it is involvedHashMap的操作,如果您对HashMapcontent is understood,know how to calculatehashcode、创建EntrySet,调用equalsMethods These operations are performed frequently,If these operations can be omitted,Then the performance should be significantly improved,问题是:How to get rid ofHashMapwithout affecting the function?
- 我们先明确HashMap在程序中的作用:Holds the position of an element in an array,So the direction of optimization is to findHashMap的替代品;
- Suppose a total of twenty-six characters may appear:从"a"到"z",那就简单了,用一个长度为26的intArray to record the position of each character,array[0]的值就是元素"a"的位置,array[1]的值就是元素"b"的位置,array[2]的值就是元素"c"的位置,如下图所示,图中的数字97是"a"的ASCII码:
- 按照上面的设计,array[0]=3就表示"a"The position of the element's last occurrence in the entire array is3,array[1]=1表示"b"The position of the element's last occurrence in the entire array is1,array[2]=2就表示"c"The position of the element's last occurrence in the entire array is2,如下图:
- According to the above design, it can be coded and submitted immediatelyLeetCode了呢?That's what I did at the time,Unfortunately the commit failed because the test didn't pass,The reason for not passing is:Not only in strings"a"到"z"的小写,There are also capital letters、空格字符、characters such as addition, subtraction, multiplication and division,遇到这些字符时,The length we designed earlier26array is not enough,It appears to be redesigning the array;
- The total length of the new array is 95,This is because all English visible characters are in total95个,从空格开始,到"`"结束,如下图的三个红框所示:
- 如上所示,长度为95的数组,All visible characters can be included,array[0]What is saved is the position of the space character,So count characters"a"在arrayThe subscripts in the array are from before**'a'-97=0变成了'a'-32=65**;
- 另外要注意的是,The initial value of each element in this array is **-1**,Indicates that the element does not exist in the string(Or that it hasn't been dealt with yet);
- The code optimized according to the above ideas is shown below,It can be seen that the changes are not significant,只是把HashMapAll relevant places have been changed to the above array logic:
public int lengthOfLongestSubstring(String s) {
int left =0, right =0, max = 0;
int[] array = {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1};
int offset;
while (right<s.length()){
//offsetIndicates that the currently processed element is inarray数组中的下标,
//If the current element is a space,那么减去32后等于0,array[offset]即array[0],
//这个array[0]The value of is the position of the space character in the string
offset = s.charAt(right) - 32;
if(array[offset]>-1){
int pos = array[offset];
if(pos>=left){
left = pos + 1;
}
}
array[offset] = right++;
if((right-left)>max){
max = right-left;
}
}
return max;
}
- Submit the above code to LeetCode,顺利通过,grades increased to 17ms,超过了99.94%的java方案,如下图:
- The final effect proves that the direction and results of this optimization are correct,Some friends have already asked where the optimization idea comes from,Actually inspired by桶排序,思想是类似的;
- 至此,LeetCodeThe solution to the third problem、编码实现、The optimization practice is all completed,I hope it can give readers some reference in the process of solving the problem,刷题之路,大家一起努力!
欢迎关注InfoQ:程序员欣宸
边栏推荐
猜你喜欢
北京电竞元宇宙论坛活动顺利召开
【链路聚合原理及配置】
jmeter跨平台运行csv等文件
How to find the cause of Fiori Launchpad routing errors by single-step debugging
Jmeter cross-platform operation CSV files
typescript56-泛型接口
win10+cuda11.7+pytorch1.12.0 installation
Spinnaker调用Jenkins API 返回403错误
typescript53 - generic constraints
View the version number of CUDA, pytorch, etc.
随机推荐
现货白银需要注意八大事项
C # WPF equipment monitoring software (classic) - the next
【杂项】如何将指定字体装入电脑然后能在Office软件里使用该字体?
互斥锁、读写锁、自旋锁,以及原子操作指令xaddl、cmpxchg的使用场景剖析
typescript56 - generic interface
【性能优化】MySQL常用慢查询分析工具
Node.js的基本使用(三)数据库与身份认证
typescript56-泛型接口
Justin Sun was invited to attend the 36氪 Yuan Universe Summit and delivered a keynote speech
POE交换机全方位解读(下)
身为程序员的我们如何卷死别人?破局重生。
WMS仓储管理系统能解决电子行业哪些仓库管理问题
ENS域名注册量创历史新高 逆市增长之势?光环之下存在炒作风险
XSS - Bypass for loop filtering
typescript55 - generic constraints
Jmeter cross-platform operation CSV files
分布式事务框架 seata
迭代扩展卡尔曼滤波IEKF
The problem of disorganized data output by mnn model
Nanoprobes丨Nanogold-抗体和链霉亲和素偶联物