当前位置:网站首页>Introducing the visualization tool Netron
Introducing the visualization tool Netron
2022-07-30 22:55:00 【fengbingchun】
Netron is a visualization tool for neural networks, deep learning, and machine learning models.You can generate descriptive visualizations of the model's architecture.The source code is at: https://github.com/lutzroeder/netron , mainly implemented by the JavaScript language, the license is MIT, and the latest release version is 5.9.6.
Netron is a cross-platform tool that works on Linux, Windows andRuns on Macand supports multiple frameworks and formats.Netron supports ONNX, TensorFlow Lite, Caffe, Keras, Darknet, PaddlePaddle, ncnn, MNN, Core ML, RKNN, MXNet, MindSpore Lite, TNN, Barracuda, Tengine, CNTK, TensorFlow.js, Caffe2 and UFF.It also experimentally supports PyTorch, TensorFlow, TorchScript, OpenVINO, Torch, Vitis AI, kmodel, Arm NN, BigDL, Chainer, Deeplearning4j, MediaPipe, ML.NET, and scikit-learn.
Installing Netron:
(1).windows: from https://github.com/lutzroeder/netron/releases/tag/v5.9.6 Download Netron-Setup-5.9.6.exe, double-click to install, after installation, a Netron icon will be generated on the desktop, double-click the icon to open, the interface is as shown below:
(2) Linux: from https://github.com/lutzroeder/netron/releases/tag/v5.9.6 Download Netron-5.9.6.AppImage and add execute permission to this file: chmod u+x Netron-5.9.6.AppImage , then double-click the file to open it.
Example: Open an onnx model, such as Lenet-5.onnx (from: https://blog.csdn.net/fengbingchun/article/details/126072998 ), click the Open Model... button, the result is as shown in the following figure: Click each box on the left (similar to the layer type name), and the box properties will be displayed on the rightother information
边栏推荐
- 力扣题(3)—— 无重复字符的最长子串
- Mysql进阶优化篇01——四万字详解数据库性能分析工具(深入、全面、详细,收藏备用)
- IJCAI2022 Tutorial | Spoken Language Comprehension: Recent Advances and New Fields
- Go语学习笔记 - gorm使用 - 表增删改查 Web框架Gin(八)
- Py之pdpbox:pdpbox的简介、安装、案例应用之详细攻略
- 代码越写越乱?那是因为你没用责任链
- 482-静态库、动态库的制作、使用及区别
- MySql 5.7.38 download and installation tutorial, and realize the operation of MySql in Navicat
- QT开发简介、命名规范、signal&slot信号槽
- mysql获取近7天,7周,7月,7年日期,根据当前时间获取近7天,7周,7月,7年日期
猜你喜欢
Detailed operator
Navicat cannot connect to mysql super detailed processing method
微软商店出现【0x800706D9】解决方法
[MySQL] Mysql transaction and authority management
go版本升级
IDEA2021.2安装与配置(持续更新)
Rust编译报错:error: linker `cc` not found
通过对抗性知识蒸馏压缩深度图神经网络
Learning about XML (1)
The most complete Redis basic + advanced project combat summary notes in history
随机推荐
Go语学习笔记 - gorm使用 - 事务操作 Web框架Gin(十一)
解决一个Mysql的utf8编码导致的问题
EasyExcel comprehensive course combat
代码越写越乱?那是因为你没用责任链
阿里云视频点播+项目实战
二进制序列
# Dasctf 7月赋能赛 WP
2022.7.27
Mysql进阶优化篇01——四万字详解数据库性能分析工具(深入、全面、详细,收藏备用)
VS2017编译Tars测试工程
宁波中宁典当转让29.5%股权为283.38万元,2021年所有者权益为968.75万元
Apache Doris系列之:深入认识实时分析型数据库Apache Doris
Gxlcms有声小说系统/小说听书系统源码
“蔚来杯“2022牛客暑期多校训练营2 H.Take the Elevator
TCP 连接 三次握手 四次挥手
Go语学习笔记 - gorm使用 - 表增删改查 Web框架Gin(八)
Compressing Deep Graph Neural Networks via Adversarial Knowledge Distillation
ML's shap: Based on FIFA 2018 Statistics (2018 Russia World Cup) team match star classification prediction data set using RF random forest + calculating SHAP value single-sample force map/dependency c
Learning about XML (1)
2022.7.27