当前位置:网站首页>Lecture 1 number field
Lecture 1 number field
2022-07-03 11:04:00 【hflag168】
1. introduce
Number is one of the most basic concepts in Mathematics , Review the development of numbers we have learned :
(1) Algebraic properties : On the addition of numbers , reduce , ride , The property of division is called the algebraic property of numbers .
(2) Number set : The set of numbers is abbreviated as the set of numbers .
Common number sets : Second interview C; The set of real Numbers R; Rational number Q wait . They have a common property that they are closed to addition, subtraction, multiplication and division .
2. Definition of number field
set up F
It's a collection of complex numbers , These include 0 and 1, If F
The sum of any two numbers in , Bad , product , merchant ( The divisor is not 0) Throw yes F
The number in , said F
For one Number field .
From the definition of number field, we can see that a number field should meet :
- Is a subset of the complex number ;
- contain 0 and 1;
- Close the operation of addition, subtraction, multiplication and division .
Common number fields : Complex field C, Real number field R, Rational number field Q. ( Set of natural numbers N And the set of integers Z It's not a number field .)
Be careful :
(1) If number set F
The result of some operation on any two numbers in is still F
in , We call it a set of numbers F
For this operation closed Of .
(2) The equivalent definition of number field : If one contains 0, 1 The set of numbers in F
For addition , Subtraction , Multiplication and division ( The divisor cannot be zero 0) It's all closed , We call it a set of numbers F
Is a number field .
Well, in addition to the rational field Q, Real number field R And complex fields C Outside , Are there any other number fields ? Of course. !
example 1. prove : Number set Q ( 2 ) = { a + b 2 ∣ a , b ∈ Q } Q( \sqrt2)=\{a + b \sqrt2 | a, b \in Q\} Q(2)={ a+b2∣a,b∈Q} It's a number field .
prove :
(1) { a + b 2 ∣ a , b ∈ Q } ⊆ C \{a+b\sqrt2| a, b\in Q\} \subseteq C { a+b2∣a,b∈Q}⊆C
(2) because 0 = 0 + 0 2 , 1 = 1 + 0 2 0=0 +0\sqrt2, 1= 1+0\sqrt2 0=0+02,1=1+02, therefore 0 , 1 ∈ Q ( 2 ) 0, 1 \in Q(\sqrt2) 0,1∈Q(2)
(3) set up a , b , c , d ∈ Q a, b, c, d\in Q a,b,c,d∈Q, Then there are
x ± y = ( a ± c ) + ( b ± d ) 2 ∈ Q ( 2 ) , x\pm y = (a\pm c) + (b\pm d)\sqrt2 \in Q(\sqrt2), x±y=(a±c)+(b±d)2∈Q(2),
x . y = ( a c + 2 b d ) + ( a d + b c ) 2 ∈ Q ( 2 ) x.y =(ac+2bd) + (ad+bc)\sqrt2 \in Q(\sqrt2) x.y=(ac+2bd)+(ad+bc)2∈Q(2)
set up a + b 2 ≠ 0 a+b\sqrt2 \ne 0 a+b2=0, Then there are a − b 2 ≠ 0 a-b\sqrt2 \ne 0 a−b2=0
( otherwise , if a − b 2 = 0 a-b\sqrt2 =0 a−b2=0, be a = b 2 a=b\sqrt2 a=b2,
\quad So there is a b = 2 ∈ Q \frac{a}{b} =\sqrt2 \in Q ba=2∈Q
\quad or a = 0 , b = 0 ⇒ a + b 2 = 0 a=0, b=0\Rightarrow a+b\sqrt2=0 a=0,b=0⇒a+b2=0 All contradictions )
c + d 2 a + b 2 = ( c + d 2 ) ( a − b 2 ) ( a + b 2 ) ( a − b 2 ) = a c − 2 b d a 2 − 2 b 2 + a d − b c a 2 − 2 b 2 2 ∈ Q ( 2 ) \frac{c+d\sqrt2}{a+b\sqrt2}=\frac{(c+d\sqrt2)(a-b\sqrt2)}{(a+b\sqrt2)(a-b\sqrt2)}=\frac{ac-2bd}{a^2-2b^2}+\frac{ad-bc}{a^2-2b^2}\sqrt2\in Q(\sqrt2) a+b2c+d2=(a+b2)(a−b2)(c+d2)(a−b2)=a2−2b2ac−2bd+a2−2b2ad−bc2∈Q(2)
therefore , Q ( 2 ) Q(\sqrt2) Q(2) It's a number field .
Can prove similar { a + b p ∣ a , b ∈ Q } , p by plain Count \{a+b\sqrt p|a,b\in Q\}, p As a prime number { a+bp∣a,b∈Q},p by plain Count , Are all numeric fields , So there are infinite number fields .
example 2: set up F
Is a set of numbers containing at least two numbers , prove : if F
The difference and quotient of any two numbers in ( The divisor is not 0) Still belong to F
, be F
Is a number field .
prove : Choose from the question set a , b ∈ F a, b \in F a,b∈F, Yes
0 = a − a ∈ F , 1 = b b ∈ F ( b ≠ 0 ) 0=a-a\in F, 1=\frac{b}{b}\in F(b\ne 0) 0=a−a∈F,1=bb∈F(b=0),
a − b ∈ F , a b ∈ F ( b ≠ 0 ) a-b\in F, \frac{a}{b}\in F(b\ne 0) a−b∈F,ba∈F(b=0),
a + b = a − ( 0 − b ) ∈ F a+b = a-(0-b)\in F a+b=a−(0−b)∈F,
b ≠ 0 when , a b = a 1 b ∈ F , b = 0 when , a b = 0 ∈ F b \ne 0 when , ab=\frac{a}{\frac{1}{b}}\in F, b=0 when , ab=0\in F b=0 when ,ab=b1a∈F,b=0 when ,ab=0∈F,
therefore , F
It's a number field .
3. Properties of number fields
nature 1: Any number field F
They all include the rational number field Q. namely , The rational number field is the minimum number field .
prove :
set up F
For any number field . By definition :
0 ∈ F , 1 ∈ F . \quad 0\in F, 1\in F. 0∈F,1∈F.
So there is
∀ m ∈ Z + , m = 1 + 1 + . . . + 1 ∈ F \forall m \in Z^+, m = 1+1+...+1\in F ∀m∈Z+,m=1+1+...+1∈F
And then there are
∀ m , n ∈ Z + , m n ∈ F \quad \forall m, n\in Z^+, \frac{m}{n}\in F ∀m,n∈Z+,nm∈F,
− m n = 0 − m n ∈ F \quad -\frac{m}{n}=0-\frac{m}{n}\in F −nm=0−nm∈F.
Any rational number can be expressed as the quotient of two integers , therefore
Q ⊆ F Q\subseteq F Q⊆F
边栏推荐
猜你喜欢
QT: QSS custom qtreeview instance
Multiple IO transfer - preamble
在职美团测试工程师的这八年,我是如何成长的,愿技术人看完都有收获
Comment réaliser des tests automatisés pour les tests logiciels embarqués?
栈,单调栈,队列,单调队列
I have been doing software testing for three years, and my salary is less than 20K. Today, I put forward my resignation
月薪过万的测试员,是一种什么样的生活状态?
使用ML.NET+ONNX预训练模型整活B站经典《华强买瓜》
How to monitor the incoming and outgoing traffic of the server host?
Bid -- service commitment -- self summary
随机推荐
在职美团测试工程师的这八年,我是如何成长的,愿技术人看完都有收获
UI自动化测试如何走出困境?价值又如何体现?
Snownlp emotion analysis
C language project: student achievement system
你真的需要自动化测试吗?
2022 pinduogai 100000 sales tutorial
Solution: jupyter notebook does not pop up the default browser
2021 reading summary (continuously updating)
Cause: org. apache. ibatis. builder. Builderexception: error parsing SQL mapper configuration problem analysis
Redis notes 01: Introduction
Test what the leader should do
Imread change image display size
MySQL checks for automatic updates at 0:00 every day
QT:QSS自定义 QRadioButton实例
Flink-- custom function
Bid -- service commitment -- self summary
Comment réaliser des tests automatisés pour les tests logiciels embarqués?
The solution that prompts "system group policy prohibits the installation of this device" under win10 system (home version has no group policy)
面试官:Redis中列表的内部实现方式是什么?
QT:QSS自定义QGroupBox实例