当前位置:网站首页>[combinatorics] Application of exponential generating function (multiple set arrangement problem | different balls in different boxes | derivation of exponential generating function of odd / even sequ
[combinatorics] Application of exponential generating function (multiple set arrangement problem | different balls in different boxes | derivation of exponential generating function of odd / even sequ
2022-07-03 03:05:00 【Programmer community】
List of articles
- Full Permutation formula of multiple sets
- Exponential generating function Deal with the arrangement of multiple sets introduce
- Exponential generating function Deal with the arrangement of multiple sets Formula derivation
- Exponential generating function Handle Finite number string problem
- Exponential generating function Handle n Bit string problem
- Exponential generating function Handle n Bit string problem ( Examination questions )
Full Permutation formula of multiple sets
Given multiset , Yes
k
k
k Elements , Each element
n
i
n_i
ni individual ;
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
 
,
n
k
⋅
a
k
}
S = \{n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k\}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Full Permutation of multiple sets Formula is
n
!
n
1
!
n
2
!
⋯
n
k
!
\cfrac{n!}{n_1! n_2!\cdots n_k!}
n1!n2!⋯nk!n!
among
n
=
n
1
+
n
2
+
n
3
+
⋯
+
n
k
n=n_1 + n_2 + n_3 + \cdots + n_k
n=n1+n2+n3+⋯+nk ;
Exponential generating function Deal with the arrangement of multiple sets introduce
Given multiset , Yes
k
k
k Elements , Each element
n
i
n_i
ni individual ;
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
 
,
n
k
⋅
a
k
}
S = \{n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k\}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
But if it's not all arranged , Is to select some of these elements to arrange , You use Exponential generating function ;
Exponential generating function It can deal with the arrangement of multiple sets :
Exponential generating function Deal with the arrangement of multiple sets Formula derivation
Derivation of exponential generating function formula :
① Every element has to find its General
x
k
k
!
\cfrac{x^k}{k!}
k!xk ;
② For the first element
a
1
a_1
a1 It's advisable Number Of The scope is
{
0
,
1
,
2
,
3
,
⋯
 
,
n
1
}
\{0, 1, 2, 3, \cdots , n_1\}
{ 0,1,2,3,⋯,n1} ,
Its exponential generating function is
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
⋯
x
n
1
n
1
!
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_1}}{ {n_1}!}
0!x0+1!x1+2!x2+⋯n1!xn1
It is reduced to :
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
1
n
1
!
1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_1}}{ {n_1}!}
1+1!x+2!x2+⋯n1!xn1
③ For the second element
a
2
a_2
a2 The number of acceptable Of The scope is
{
0
,
1
,
2
,
3
,
⋯
 
,
n
2
}
\{0, 1, 2, 3, \cdots , n_2\}
{ 0,1,2,3,⋯,n2} ;
Its exponential generating function is
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
⋯
x
n
2
n
2
!
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_2}}{ {n_2}!}
0!x0+1!x1+2!x2+⋯n2!xn2
It is reduced to :
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
2
n
2
!
1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_2}}{ {n_2}!}
1+1!x+2!x2+⋯n2!xn2
④ For the first
k
k
k Elements
a
k
a_k
ak The number of acceptable Of The scope is
{
0
,
1
,
2
,
3
,
⋯
 
,
n
k
}
\{0, 1, 2, 3, \cdots , n_k\}
{ 0,1,2,3,⋯,nk} ;
Its exponential generating function is
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
⋯
x
n
k
n
k
!
\cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_k}}{ {n_k}!}
0!x0+1!x1+2!x2+⋯nk!xnk
It is reduced to :
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
k
n
k
!
1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_k}}{ {n_k}!}
1+1!x+2!x2+⋯nk!xnk
⑤ The final exponential generating function is :
G
e
(
x
)
=
(
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
1
n
1
!
)
(
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
2
n
2
!
)
⋯
(
1
+
x
1
!
+
x
2
2
!
+
⋯
x
n
k
n
k
!
)
G_e(x) = (1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_1}}{ {n_1}!}) (1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_2}}{ {n_2}!}) \cdots (1 + \cfrac{x}{1!} + \cfrac{x^2}{2!} + \cdots \cfrac{x^{n_k}}{ {n_k}!})
Ge(x)=(1+1!x+2!x2+⋯n1!xn1)(1+1!x+2!x2+⋯n2!xn2)⋯(1+1!x+2!x2+⋯nk!xnk)
Exponential generating function Handle Finite number string problem
subject :
Yes
4
4
4 A digital
1
,
2
,
3
,
4
1, 2,3,4
1,2,3,4 constitute
5
5
5 digit Number of schemes ;
among
1
1
1 Not more than
2
2
2 Time , There must be ;
among
2
2
2 No more than
1
1
1 Time ;
among
3
3
3 The number of occurrences can reach
3
3
3 Time , It's also possible not to appear ;
among
4
4
4 The number of occurrences must be even numbers ;
analysis :
- 1.
1
1
1
1
1 Not more than
2
2
2 Time , There must be , therefore At least there must be
1
1
1 Time , The sequence of its occurrence here is
{
1
,
2
}
\{1, 2\}
{ 1,2} ;
- Its corresponding exponential generating function is :
(
x
1
1
!
+
x
2
2
!
)
(\cfrac{x^1}{1!} + \cfrac{x^2}{2!})
(1!x1+2!x2) ;
1 Number of occurrences :
- Its corresponding exponential generating function is :
- 2.
2
2
2
2
2 Not more than
1
1
1 Time , The sequence of its occurrence here is
{
0
,
1
}
\{0, 1\}
{ 0,1} ;
- Its corresponding exponential generating function is :
(
x
0
0
!
+
x
1
1
!
)
( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} )
(0!x0+1!x1) ;
2 Number of occurrences :
- Its corresponding exponential generating function is :
- 3.
3
3
3
3
3 The number of occurrences can reach
3
3
3 Time , Can not appear , The sequence of its occurrence here is
{
0
,
1
,
2
,
3
}
\{0, 1, 2, 3\}
{ 0,1,2,3} ;
- Its corresponding exponential generating function is :
(
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
)
( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} )
(0!x0+1!x1+2!x2+3!x3) ;
3 Number of occurrences :
- Its corresponding exponential generating function is :
- 4.
4
4
4
4
4 The number of occurrences is even , The sequence of its occurrence here is
{
0
,
2
,
4
}
\{0, 2, 4\}
{ 0,2,4} ;
- Its corresponding exponential generating function is :
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
)
( \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} )
(0!x0+2!x2+4!x4) ;
4 Number of occurrences :
- Its corresponding exponential generating function is :
Explain :
① Write its corresponding generating function : Here is the arrangement , Therefore, the general term of the generating function must be divided by
k
!
k!
k! ;
G
e
(
x
)
=
(
x
1
1
!
+
x
2
2
!
)
(
x
0
0
!
+
x
1
1
!
)
(
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
)
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
)
=
(
x
+
x
2
2
!
)
(
1
+
x
)
(
1
+
x
+
x
2
2
!
+
x
3
3
!
)
(
1
+
x
2
2
!
+
x
4
4
!
)
G_e(x) = (\cfrac{x^1}{1!} + \cfrac{x^2}{2!}) ( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} ) ( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} ) ( \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} )\\ = ( x + \cfrac{x^2}{2!}) ( 1+ x) ( 1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} ) ( 1 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} )
Ge(x)=(1!x1+2!x2)(0!x0+1!x1)(0!x0+1!x1+2!x2+3!x3)(0!x0+2!x2+4!x4)=(x+2!x2)(1+x)(1+x+2!x2+3!x3)(1+2!x2+4!x4)
② Expand the above formula :
G
e
(
x
)
=
(
x
+
3
2
x
2
+
1
2
x
3
)
(
1
+
x
+
x
2
+
2
3
x
3
+
7
24
x
4
+
1
8
x
5
+
1
48
x
6
+
1
144
x
7
)
=
x
+
5
2
x
2
+
3
x
3
+
8
3
x
4
+
43
24
x
5
+
43
48
x
6
+
17
48
x
7
+
1
288
x
8
+
1
48
x
9
+
1
288
x
10
G_e(x) = (x + \cfrac{3}{2} x^2 + \cfrac{1}{2} x^3) (1 + x + x^2 + \cfrac{2}{3}x^3+ \cfrac{7}{24}x^4 + \cfrac{1}{8}x^5 + \cfrac{1}{48}x^6 + \cfrac{1}{144}x^7) \\ = x + \cfrac{5}{2}x^2 + 3x^3 + \cfrac{8}{3}x^4 + \cfrac{43}{24}x^5 + \cfrac{43}{48}x^6 + \cfrac{17}{48}x^7 + \cfrac{1}{288}x^8 + \cfrac{1}{48}x^9 + \cfrac{1}{288}x^{10}
Ge(x)=(x+23x2+21x3)(1+x+x2+32x3+247x4+81x5+481x6+1441x7)=x+25x2+3x3+38x4+2443x5+4843x6+4817x7+2881x8+481x9+2881x10
③ Put the above formula in Of
43
24
x
5
\cfrac{43}{24}x^5
2443x5 term Convert to
x
k
k
!
\cfrac{x^k}{k!}
k!xk In the form of :
43
×
5
!
24
×
5
!
x
5
=
43
×
5
!
24
×
x
5
5
!
=
43
×
5
×
4
×
3
×
2
24
×
x
5
5
!
=
215
×
x
5
5
!
\cfrac{43 \times 5!}{24 \times 5!}x^5 =\cfrac{43 \times 5!}{24} \times \cfrac{x^5}{5!} =\cfrac{43 \times 5 \times 4 \times 3 \times 2}{24} \times \cfrac{x^5}{5!} = 215 \times \cfrac{x^5}{5!}
24×5!43×5!x5=2443×5!×5!x5=2443×5×4×3×2×5!x5=215×5!x5
④ The above calculation results
x
5
5
!
\cfrac{x^5}{5!}
5!x5 Of The coefficient is
215
215
215 ; therefore Four Numbers constitute
5
5
5 The number of schemes with digits is
215
215
215 individual ;
Exponential generating function Handle n Bit string problem
subject : seek
1
,
3
,
5
,
7
,
9
1,3,5,7,9
1,3,5,7,9 Five numbers , form
n
n
n Number of schemes with digits , At the same time, the following requirements should be met ;
3
,
7
3,7
3,7 Here is even numbers ;
1
,
5
,
9
1,5,9
1,5,9 There is no limit to the number of occurrences ;
analysis : Is equivalent to
n
n
n Put a different ball into
1
,
3
,
5
,
7
,
9
1,3,5,7,9
1,3,5,7,9 Five boxes , The number of balls in each box Number of schemes ;
3
,
7
3,7
3,7 Occurrence analysis : It can only appear Even number of times , namely The number of occurrences is a sequence
{
0
,
2
,
4
,
⋯
 }
\{0, 2, 4, \cdots\}
{ 0,2,4,⋯} ;
- The corresponding exponential generating function term is :
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
+
…
 )
(\cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \dots)
(0!x0+2!x2+4!x4+…) ;
- The corresponding exponential generating function term is :
1
,
5
,
9
1,5,9
1,5,9 Occurrence analysis : There is no limit to the number of times it appears , Then the sequence of occurrences is
0
,
1
,
2
,
⋯
{0, 1, 2, \cdots}
0,1,2,⋯
- The corresponding exponential generating function term is :
(
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
⋯
 )
=
e
x
( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cdots ) = e^x
(0!x0+1!x1+2!x2+⋯)=ex ;
- The corresponding exponential generating function term is :
Explain :
① Write the corresponding Exponential generating function :
G
e
(
x
)
=
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
2
(
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
3
G_e(x) = ( \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots )^2 ( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots)^3
Ge(x)=(0!x0+2!x2+4!x4+⋯)2(0!x0+1!x1+2!x2+3!x3+⋯)3
② Number of occurrences Normal natural number Sequence
{
0
,
1
,
2
,
3
,
4
,
⋯
 
}
\{ 0, 1, 2, 3, 4, \cdots\}
{ 0,1,2,3,4,⋯} Calculation of exponential generating function :
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
=
∑
k
=
0
∞
1
⋅
x
k
k
!
=
e
x
\begin{array}{lcl} & \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots\\ \\ = & 1+ x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots\\ \\ =& \sum_{k=0}^{\infty} 1 \cdot \cfrac{x^k}{k!} \\ = & e^x \end{array}
===0!x0+1!x1+2!x2+3!x3+⋯1+x+2!x2+3!x3+⋯∑k=0∞1⋅k!xkex
② appear Even number of times Sequence
{
0
,
2
,
4
,
6
,
⋯
 
}
\{0 , 2, 4, 6 , \cdots\}
{ 0,2,4,6,⋯} Calculation of exponential generating function : Eliminate odd items , Leave even items ;
Two formulas are known :
e
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
e^x = 1+ x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots
ex=1+x+2!x2+3!x3+⋯
( All terms of this formula are positive )
e
−
x
=
1
−
x
+
x
2
2
!
−
x
3
3
!
+
⋯
e^{-x} = 1 - x + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots
e−x=1−x+2!x2−3!x3+⋯
( All even terms of the formula It's all positive , All odd directions are negative )
Add the two formulas :
e
x
+
e
−
x
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
+
1
−
x
+
x
2
2
!
−
x
3
3
!
+
⋯
=
1
×
2
+
x
2
2
!
×
2
+
x
4
4
!
×
2
+
⋯
\begin{array}{lcl}e^x + e^{-x} & = & 1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots \\ \\ && +1 - x + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots \\ \\ & = & 1 \times 2 + \cfrac{x^2}{2!} \times 2 + \cfrac{x^4}{4!} \times 2 + \cdots \end{array}
ex+e−x==1+x+2!x2+3!x3+⋯+1−x+2!x2−3!x3+⋯1×2+2!x2×2+4!x4×2+⋯
( The result is even numbers Sequence Exponential generating function 2 times )
Even sequence generating function calculation :
1
+
x
2
2
!
+
x
4
4
!
+
⋯
=
1
2
(
e
x
+
e
−
x
)
1 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots = \cfrac{1}{2} (e^x + e^{-x})
1+2!x2+4!x4+⋯=21(ex+e−x)
③ take ① ② The result of is substituted into the exponential generating function :
G
e
(
x
)
=
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
2
(
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
3
=
(
1
2
(
e
x
+
e
−
x
)
)
2
(
e
x
)
3
=
1
4
(
2
e
x
e
−
x
+
e
2
x
+
e
−
2
x
)
e
3
x
=
1
4
(
2
e
3
x
+
e
5
x
+
e
x
)
=
1
4
(
∑
n
=
0
∞
5
n
n
!
x
n
+
2
∑
n
=
0
∞
3
n
n
!
x
n
+
∑
n
=
0
∞
1
n
!
x
n
)
=
1
4
∑
n
=
0
∞
(
5
n
+
2
⋅
3
n
+
1
)
x
n
n
!
\begin{array}{lcl}G_e(x) &=& ( \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots )^2 ( \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots)^3\\ \\ &=& ( \cfrac{1}{2} (e^x + e^{-x}))^2 (e^x)^3 \\ &=& \cfrac{1}{4}( 2 e^x e^{-x} + e^{2x} + e^{-2x} ) e^{3x} \\ &=& \cfrac{1}{4}( 2 e^{3x} + e^{5x} + e^{x} ) \\ &=& \cfrac{1}{4} ( \sum_{n=0}^{\infty} \cfrac{5^n}{n!} x^n + 2\sum_{n=0}^{\infty} \cfrac{3^n}{n!} x^n + \sum_{n=0}^{\infty} \cfrac{1}{n!} x^n ) \\ &=& \cfrac{1}{4} \sum_{n=0}^{\infty} ( 5^n + 2 \cdot 3^n + 1 ) \cfrac{x^n}{n!} \\ \end{array}
Ge(x)======(0!x0+2!x2+4!x4+⋯)2(0!x0+1!x1+2!x2+3!x3+⋯)3(21(ex+e−x))2(ex)341(2exe−x+e2x+e−2x)e3x41(2e3x+e5x+ex)41(∑n=0∞n!5nxn+2∑n=0∞n!3nxn+∑n=0∞n!1xn)41∑n=0∞(5n+2⋅3n+1)n!xn
thus , You can get
x
n
n
!
\cfrac{x^n}{n!}
n!xn The coefficient of is
1
4
(
5
n
+
2
⋅
3
n
+
1
)
\cfrac{1}{4} ( 5^n + 2 \cdot 3^n + 1 )
41(5n+2⋅3n+1)
④
5
5
5 The digits are composed as required
n
n
n Number of digits, number of schemes yes
1
4
(
5
n
+
2
⋅
3
n
+
1
)
\cfrac{1}{4} ( 5^n + 2 \cdot 3^n + 1 )
41(5n+2⋅3n+1) Kind of ;
Exponential generating function Handle n Bit string problem ( Examination questions )
subject : hold
n
n
n Numbered balls , Put in
3
3
3 In a different box , At the same time, the following requirements should be met ;
The first
1
1
1 Put at least one box ;
The first
2
2
2 Put an odd number of boxes ;
The first
3
3
3 Put an even number of boxes ;
analysis :
- The first
1
1
1 Analysis of the number of balls in a box : At least one , It puts the ball Number Sequence is
{
1
,
2
,
3
,
⋯
 }
\{1, 2, 3, \cdots\}
- The first
1
1
1 Boxes Of Release sequence Corresponding Exponential generating function :
(
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
 )
(\cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots)
(1!x1+2!x2+3!x3+⋯)
{ 1,2,3,⋯}
- The first
- The first
2
2
2 Analysis of the number of balls in a box : Put an odd number of balls , It puts the ball Number Sequence is
{
1
,
3
,
5
,
⋯
 }
\{1, 3, 5, \cdots\}
- The first
2
2
2 Boxes Of Release sequence Corresponding Exponential generating function :
(
x
1
1
!
+
x
3
3
!
+
x
5
5
!
+
⋯
 )
(\cfrac{x^1}{1!} + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots)
(1!x1+3!x3+5!x5+⋯)
{ 1,3,5,⋯}
- The first
- The first
3
3
3 Analysis of the number of balls in a box : Put an even number of balls , It puts the ball Number Sequence is
{
2
,
4
,
6
,
⋯
 }
\{2, 4, 6, \cdots\}
- The first
3
3
3 Boxes Of Release sequence Corresponding Exponential generating function :
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
+
⋯
 )
(\cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots)
(0!x0+2!x2+4!x4+⋯)
{ 2,4,6,⋯}
- The first
Explain :
① Write the generating function :
G
e
(
x
)
=
(
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
(
x
1
1
!
+
x
3
3
!
+
x
5
5
!
+
⋯
 
)
(
x
0
0
!
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
=
(
x
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
(
x
+
x
3
3
!
+
x
5
5
!
+
⋯
 
)
(
1
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
\begin{array}{lcl}\\ G_e(x) &=& (\cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots) ( \cfrac{x^1}{1!} + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots ) ( \cfrac{x^0}{0!} + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots )\\ \\ &=& ( x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots ) ( x + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots ) ( 1 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots ) \\ \end{array}
Ge(x)==(1!x1+2!x2+3!x3+⋯)(1!x1+3!x3+5!x5+⋯)(0!x0+2!x2+4!x4+⋯)(x+2!x2+3!x3+⋯)(x+3!x3+5!x5+⋯)(1+2!x2+4!x4+⋯)
② Calculation The first
1
1
1 individual The box Of Exponential generating function term ( except
0
0
0 Outer sequence ) :
We know the formula :
e
x
=
x
0
0
!
+
x
1
1
!
+
x
2
2
!
+
x
3
3
!
+
⋯
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
\begin{array}{lcl}e^x &=& \cfrac{x^0}{0!} + \cfrac{x^1}{1!} + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots\\ \\ &=& 1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots \\ \end{array}
ex==0!x0+1!x1+2!x2+3!x3+⋯1+x+2!x2+3!x3+⋯
e
−
x
=
x
0
0
!
−
x
1
1
!
+
x
2
2
!
−
x
3
3
!
+
⋯
=
1
−
x
+
x
2
2
!
−
x
3
3
!
+
⋯
\begin{array}{lcl}e^{-x} &=& \cfrac{x^0}{0!} - \cfrac{x^1}{1!} + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots\\ \\ &=& 1 - x + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots \\ \end{array}
e−x==0!x0−1!x1+2!x2−3!x3+⋯1−x+2!x2−3!x3+⋯
The exponential generating function corresponding to the first box :
x
+
x
2
2
!
+
x
3
3
!
+
⋯
=
e
x
−
1
\begin{array}{lcl}\\ x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots = e^x-1 \end{array}
x+2!x2+3!x3+⋯=ex−1
③ Calculation The first
2
2
2 individual The box Of Exponential generating function term ( Odd sequence ) :
e
x
−
e
−
x
=
(
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
−
(
1
−
x
+
x
2
2
!
−
x
3
3
!
+
⋯
 
)
=
2
(
x
+
x
3
3
!
+
x
5
5
!
+
⋯
 
)
\begin{array}{lcl}\\ e^x - e^{-x} &=& (1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots) - (1 - x + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots) \\ &=& 2 ( x + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots) \\ \end{array}
ex−e−x==(1+x+2!x2+3!x3+⋯)−(1−x+2!x2−3!x3+⋯)2(x+3!x3+5!x5+⋯)
So odd sequence Corresponding exponential generating function yes :
x
+
x
3
3
!
+
x
5
5
!
+
⋯
=
e
x
−
e
−
x
2
x + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots = \cfrac{e^x - e^{-x}}{2}
x+3!x3+5!x5+⋯=2ex−e−x
④ Calculation The first
3
3
3 individual The box Of Exponential generating function term ( Even sequence ) :
e
x
+
e
−
x
=
(
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
+
(
1
−
x
+
x
2
2
!
−
x
3
3
!
+
⋯
 
)
=
2
(
0
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
\begin{array}{lcl}\\ e^x + e^{-x} &=& (1 + x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots) + (1 - x + \cfrac{x^2}{2!} - \cfrac{x^3}{3!} + \cdots) \\ &=& 2 ( 0 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots) \\ \end{array}
ex+e−x==(1+x+2!x2+3!x3+⋯)+(1−x+2!x2−3!x3+⋯)2(0+2!x2+4!x4+⋯)
So odd sequence Corresponding exponential generating function yes :
1
+
x
2
2
!
+
x
4
4
!
+
⋯
=
e
x
+
e
−
x
2
1 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots = \cfrac{e^x + e^{-x}}{2}
1+2!x2+4!x4+⋯=2ex+e−x
⑤ take ② ③ ④ result Plug in Exponential generating function :
G
e
(
x
)
=
(
x
+
x
2
2
!
+
x
3
3
!
+
⋯
 
)
(
x
+
x
3
3
!
+
x
5
5
!
+
⋯
 
)
(
1
+
x
2
2
!
+
x
4
4
!
+
⋯
 
)
=
(
e
x
−
1
)
(
e
x
−
e
−
x
2
)
(
e
x
+
e
−
x
2
)
=
1
4
(
e
x
−
1
)
(
(
e
x
)
2
−
(
e
−
x
)
2
)
=
1
4
(
e
x
−
1
)
(
e
2
x
−
e
−
2
x
)
=
1
4
(
e
x
e
2
x
−
e
x
e
−
2
x
−
e
2
x
+
e
−
2
x
)
=
1
4
(
e
3
x
−
e
−
x
−
e
2
x
+
e
−
2
x
)
=
1
4
(
∑
n
=
0
∞
x
n
n
!
3
n
−
∑
n
=
0
∞
x
n
n
!
(
−
1
)
n
−
∑
n
=
0
∞
x
n
n
!
2
n
+
∑
n
=
0
∞
x
n
n
!
(
−
2
)
n
)
=
∑
n
=
0
∞
x
n
n
!
(
1
4
(
3
n
−
(
−
1
)
n
−
2
n
+
(
−
2
)
n
)
)
\begin{array}{lcl}\\ G_e(x) &=& ( x + \cfrac{x^2}{2!} + \cfrac{x^3}{3!} + \cdots ) ( x + \cfrac{x^3}{3!} + \cfrac{x^5}{5!} + \cdots ) ( 1 + \cfrac{x^2}{2!} + \cfrac{x^4}{4!} + \cdots )\\ \\ \\ &=& ( e^x - 1) ( \cfrac{e^x - e^{-x}}{2} ) ( \cfrac{e^x + e^{-x}}{2} ) \\ \\ &=& \cfrac{1}{4} (e^x - 1) ( (e^x)^2 - (e^{-x})^2 ) \\ \\ &=& \cfrac{1}{4} (e^x - 1) ( e^{2x} - e^{-2x} ) \\ \\ &=& \cfrac{1}{4} ( e^x e^{2x} - e^x e^{-2x} - e^{2x} + e^{-2x} ) \\ \\ &=& \cfrac{1}{4} (e^{3x} - e^{-x} - e^{2x} + e{-2x} ) \\ \\ &=& \cfrac{1}{4} ( \sum_{n=0}^{\infty}\cfrac{x^n}{n!} 3^n - \sum_{n=0}^{\infty}\cfrac{x^n}{n!} (-1)^n - \sum_{n=0}^{\infty}\cfrac{x^n}{n!} 2^n + \sum_{n=0}^{\infty}\cfrac{x^n}{n!} (-2)^n) \\ \\ &=& \sum_{n=0}^{\infty}\cfrac{x^n}{n!} ( \cfrac{1}{4} ( 3^n - (-1)^n - 2^n + (-2)^n) ) \\ \\ \end{array}
Ge(x)========(x+2!x2+3!x3+⋯)(x+3!x3+5!x5+⋯)(1+2!x2+4!x4+⋯)(ex−1)(2ex−e−x)(2ex+e−x)41(ex−1)((ex)2−(e−x)2)41(ex−1)(e2x−e−2x)41(exe2x−exe−2x−e2x+e−2x)41(e3x−e−x−e2x+e−2x)41(∑n=0∞n!xn3n−∑n=0∞n!xn(−1)n−∑n=0∞n!xn2n+∑n=0∞n!xn(−2)n)∑n=0∞n!xn(41(3n−(−1)n−2n+(−2)n))
thus , You can see
x
n
n
!
\cfrac{x^n}{n!}
n!xn The coefficient before is
1
4
(
3
n
−
(
−
1
)
n
−
2
n
+
(
−
2
)
n
)
\cfrac{1}{4} ( 3^n - (-1)^n - 2^n + (-2)^n)
41(3n−(−1)n−2n+(−2)n) ;
⑥ The final result is calculated :
Based on the above calculation ,
x
n
n
!
\cfrac{x^n}{n!}
n!xn The coefficient before is
1
4
(
3
n
−
(
−
1
)
n
−
2
n
+
(
−
2
)
n
)
\cfrac{1}{4} ( 3^n - (-1)^n - 2^n + (-2)^n)
41(3n−(−1)n−2n+(−2)n) , So the corresponding
n
n
n Numbered balls Put in 3 In different boxes , The number of schemes satisfying a series of conditions is
1
4
(
3
n
−
(
−
1
)
n
−
2
n
+
(
−
2
)
n
)
\cfrac{1}{4} ( 3^n - (-1)^n - 2^n + (-2)^n)
41(3n−(−1)n−2n+(−2)n) ;
边栏推荐
- [fluent] futurebuilder asynchronous programming (futurebuilder construction method | asyncsnapshot asynchronous calculation)
- Unity3d human skin real time rendering real simulated human skin real time rendering "suggestions collection"
- Use optimization | points that can be optimized in recyclerview
- MySql实战45讲【SQL查询和更新执行流程】
- 超好用的日志库 logzero
- sql server数据库添加 mdf数据库文件,遇到的报错
- 你真的懂继电器吗?
- docker安装redis
- Xiaodi notes
- The core idea of performance optimization, dry goods sharing
猜你喜欢

I2C 子系統(四):I2C debug
![[principles of multithreading and high concurrency: 1_cpu multi-level cache model]](/img/c7/6b5ab4ff7379bfccff7cdbb358ff8f.jpg)
[principles of multithreading and high concurrency: 1_cpu multi-level cache model]

Linear rectification function relu and its variants in deep learning activation function

MySql实战45讲【全局锁和表锁】

Three. JS local environment setup

Today, it's time to copy the bottom!

MySql实战45讲【事务隔离】

Kubernetes family container housekeeper pod online Q & A?

Left connection, inner connection

TCP 三次握手和四次挥手机制,TCP为什么要三次握手和四次挥手,TCP 连接建立失败处理机制
随机推荐
Counter统计数量后,如何返回有序的key
I2C subsystem (III): I2C driver
MySql实战45讲【行锁】
[principles of multithreading and high concurrency: 1_cpu multi-level cache model]
Introduction to cron expression
[Fuhan 6630 encodes and stores videos, and uses RTSP server and timestamp synchronization to realize VLC viewing videos]
Le processus de connexion mysql avec docker
MySql实战45讲【事务隔离】
Change cell color in Excel using C - cell color changing in Excel using C
【富瀚6630编码存录像,用rtsp服务器及时间戳同步实现vlc观看录像】
js根据树结构查找某个节点的下面的所有父节点或者子节点
Update and return document in mongodb - update and return document in mongodb
Three. JS local environment setup
MySQL Real combat 45 [SQL query and Update Execution Process]
Force deduction ----- the minimum path cost in the grid
Check log4j problems using stain analysis
Yiwen takes you to know ZigBee
How to limit the size of the dictionary- How to limit the size of a dictionary?
How to select the minimum and maximum values of columns in the data table- How to select min and max values of a column in a datatable?
Add automatic model generation function to hade