当前位置:网站首页>[hard core dry goods] which company is better in data analysis? Choose pandas or SQL
[hard core dry goods] which company is better in data analysis? Choose pandas or SQL
2022-07-05 19:33:00 【Xinyi 2002】
Another week , Today, Xiaobian is going to talk about Pandas
and SQL
Grammatical differences between , I believe for many data analysts , Whether it's Pandas
Module or SQL
, They are all very many tools used in daily study and work , Of course, we can also be in Pandas
From the module SQL
sentence , By calling read_sql()
Method
Want to get the source code of this tutorial , It can be answered in the background of official account 【20220704】 Can get
Building a database
First we pass SQL
Statement is creating a new database , I'm sure everyone knows the basic grammar ,
CREATE TABLE Table name (
Field name data type ...
)
Let's take a look at the specific code
import pandas as pd
import sqlite3
connector = sqlite3.connect('public.db')
my_cursor = connector.cursor()
my_cursor.executescript("""
CREATE TABLE sweets_types
(
id integer NOT NULL,
name character varying NOT NULL,
PRIMARY KEY (id)
);
... Limited space , Refer to the source code for details ...
""")
At the same time, we also insert data into these new tables , The code is as follows
my_cursor.executescript("""
INSERT INTO sweets_types(name) VALUES
('waffles'),
('candy'),
('marmalade'),
('cookies'),
('chocolate');
... Limited space , Refer to the source code for details ...
""")
We can view the new table through the following code , And convert it to DataFrame
Data set in format , The code is as follows
df_sweets = pd.read_sql("SELECT * FROM sweets;", connector)
output
We have built a total of 5 Data sets , It mainly involves desserts 、 Types of desserts and data of processing and storage , For example, the data set of desserts mainly includes the weight of desserts 、 Sugar content 、 Production date and expiration time 、 Cost and other data , as well as
df_manufacturers = pd.read_sql("SELECT * FROM manufacturers", connector)
output
The data set of processing involves the main person in charge and contact information of the factory , The warehouse data set involves the detailed address of the warehouse 、 City location, etc
df_storehouses = pd.read_sql("SELECT * FROM storehouses", connector)
output
And the dessert category data set ,
df_sweets_types = pd.read_sql("SELECT * FROM sweets_types;", connector)
output
Data screening
Screening of simple conditions
Next, let's do some data screening , For example, the weight of desserts is equal to 300 The name of dessert , stay Pandas
The code in the module looks like this
# Convert data type
df_sweets['weight'] = pd.to_numeric(df_sweets['weight'])
# Output results
df_sweets[df_sweets.weight == 300].name
output
1 Mikus
6 Soucus
11 Macus
Name: name, dtype: object
Of course, we can also pass pandas
In the middle of read_sql()
Method to call SQL
sentence
pd.read_sql("SELECT name FROM sweets WHERE weight = '300'", connector)
output
Let's look at a similar case , The screening cost is equal to 100 The name of dessert , The code is as follows
# Pandas
df_sweets['cost'] = pd.to_numeric(df_sweets['cost'])
df_sweets[df_sweets.cost == 100].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost = '100'", connector)
output
Milty
For text data , We can also further screen out the data we want , The code is as follows
# Pandas
df_sweets[df_sweets.name.str.startswith('M')].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output
Milty
Mikus
Mivi
Mi
Misa
Maltik
Macus
Of course. SQL
Wildcards in statements ,%
Means to match any number of letters , and _
Means to match any letter , The specific differences are as follows
# SQL
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M_'", connector)
output
Screening of complex conditions
Let's take a look at data filtering with multiple conditions , For example, we want the weight to be equal to 300 And the cost price is controlled at 150 The name of dessert , The code is as follows
# Pandas
df_sweets[(df_sweets.cost == 150) & (df_sweets.weight == 300)].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost = '150' AND weight = '300'", connector)
output
Mikus
Or the cost price can be controlled within 200-300 Dessert name between , The code is as follows
# Pandas
df_sweets[df_sweets['cost'].between(200, 300)].name
# SQL
pd.read_sql("SELECT name FROM sweets WHERE cost BETWEEN '200' AND '300'", connector)
output
If it comes to sorting , stay SQL
It uses ORDER BY
sentence , The code is as follows
# SQL
pd.read_sql("SELECT name FROM sweets ORDER BY id DESC", connector)
output
And in the Pandas
What is called in the module is sort_values()
Method , The code is as follows
# Pandas
df_sweets.sort_values(by='id', ascending=False).name
output
11 Macus
10 Maltik
9 Sor
8 Co
7 Soviet
6 Soucus
5 Soltic
4 Misa
3 Mi
2 Mivi
1 Mikus
0 Milty
Name: name, dtype: object
Select the dessert name with the highest cost price , stay Pandas
The code in the module looks like this
df_sweets[df_sweets.cost == df_sweets.cost.max()].name
output
11 Macus
Name: name, dtype: object
And in the SQL The code in the statement , We need to first screen out which dessert is the most expensive , Then proceed with further processing , The code is as follows
pd.read_sql("SELECT name FROM sweets WHERE cost = (SELECT MAX(cost) FROM sweets)", connector)
We want to see which cities are warehousing , stay Pandas
The code in the module looks like this , By calling unique()
Method
df_storehouses['city'].unique()
output
array(['Moscow', 'Saint-petersburg', 'Yekaterinburg'], dtype=object)
And in the SQL
The corresponding sentence is DISTINCT
keyword
pd.read_sql("SELECT DISTINCT city FROM storehouses", connector)
Data grouping Statistics
stay Pandas
Group statistics in modules generally call groupby()
Method , Then add a statistical function later , For example, it is to calculate the mean value of scores mean()
Method , Or summative sum()
Methods, etc. , For example, we want to find out the names of desserts produced and processed in more than one city , The code is as follows
df_manufacturers.groupby('name').name.count()[df_manufacturers.groupby('name').name.count() > 1]
output
name
Mishan 2
Name: name, dtype: int64
And in the SQL
The grouping in the statement is also GROUP BY
, If there are other conditions later , It's using HAVING
keyword , The code is as follows
pd.read_sql("""
SELECT name, COUNT(name) as 'name_count' FROM manufacturers
GROUP BY name HAVING COUNT(name) > 1
""", connector)
Data merging
When two or more datasets need to be merged , stay Pandas
Modules , We can call merge()
Method , For example, we will df_sweets
Data set and df_sweets_types
Merge the two data sets , among df_sweets
In the middle of sweets_types_id
Is the foreign key of the table
df_sweets.head()
output
df_sweets_types.head()
output
The specific data consolidation code is as follows
df_sweets_1 = df_sweets.merge(df_sweets_types, left_on='sweets_types_id', right_on='id')
output
We will further screen out chocolate flavored desserts , The code is as follows
df_sweets_1.query('name_y == "chocolate"').name_x
output
10 Misa
11 Sor
Name: name_x, dtype: object
and SQL
The sentence is relatively simple , The code is as follows
# SQL
pd.read_sql("""
SELECT sweets.name FROM sweets
JOIN sweets_types ON sweets.sweets_types_id = sweets_types.id
WHERE sweets_types.name = 'chocolate';
""", connector)
output
The structure of the data set
Let's take a look at the structure of the data set , stay Pandas
View directly in the module shape
Attribute is enough , The code is as follows
df_sweets.shape
output
(12, 10)
And in the SQL
In the sentence , It is
pd.read_sql("SELECT count(*) FROM sweets;", connector)
output
NO.1
Previous recommendation
Historical articles
8 Cool visual charts , Quickly write the visual analysis report that the boss likes to see
【 Hard core dry goods 】Pandas Data type conversion in modules
use Python among Plotly.Express The module draws several charts , I was really amazed !!
Share 、 Collection 、 give the thumbs-up 、 I'm looking at the arrangement ?
边栏推荐
- webuploader文件上传 拖拽上传 进度监听 类型控制 上传结果监听控件
- Necessary skills for interview in large factories, 2022android will not die, I will not fall
- 手机股票开户安全吗?靠不靠谱啊?
- MySQL中字段类型为longtext的值导出后显示二进制串方式
- 信息/数据
- 开源 SPL 消灭数以万计的数据库中间表
- Millimeter wave radar human body sensor, intelligent perception of static presence, human presence detection application
- Get wechat avatar and nickname with uniapp
- XaaS 陷阱:万物皆服务(可能)并不是IT真正需要的东西
- Xaas trap: all things serve (possible) is not what it really needs
猜你喜欢
手把手教你处理 JS 逆向之图片伪装
Common - Hero Minesweeper
【AI 框架基础技术】自动求导机制 (Autograd)
How to apply smart contracts more wisely in 2022?
如何在2022年更明智地应用智能合约?
城链科技数字化创新战略峰会圆满召开
强化学习-学习笔记4 | Actor-Critic
Explain in detail the functions and underlying implementation logic of the groups sets statement in SQL
Notion 类生产力工具如何选择?Notion 、FlowUs 、Wolai 对比评测
Advanced application of C # language
随机推荐
MMO项目学习一:预热
That's awesome. It's enough to read this article
5 years of experience, 27 days of Android programmer interview, 2022 programmer advanced classic
毫米波雷达人体感应器,智能感知静止存在,人体存在检测应用
IFD-x 微型红外成像仪(模块)关于温度测量和成像精度的关系
手机开户选择哪家券商公司比较好哪家平台更安全
Mysql如何对json数据进行查询及修改
shell编程基础(第9篇:循环)
How MySQL queries and modifies JSON data
Hiengine: comparable to the local cloud native memory database engine
Get wechat avatar and nickname with uniapp
Is it safe for Guohai Securities to open an account online?
Explain in detail the functions and underlying implementation logic of the groups sets statement in SQL
如何在2022年更明智地应用智能合约?
What is the function of okcc call center
What are general items
C#应用程序界面开发基础——窗体控制(6)——菜单栏、工具栏和状态栏控件
手把手教你处理 JS 逆向之图片伪装
Go语言 | 01 WSL+VSCode环境搭建避坑指南
Common interview questions in Android, 2022 golden nine silver ten Android factory interview questions hit