当前位置:网站首页>Derivative Operations on Vectors and Derivative Operations on Vector Cross and Dot Products
Derivative Operations on Vectors and Derivative Operations on Vector Cross and Dot Products
2022-07-30 07:50:00 【sunset stained ramp】
目的:I've been writing optimized code recently,The variables in the function need to be differentiated,and find their Jacobian matrices.Therefore, the derivation of vectors and matrices is used.
A vector can be represented as follows: Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T
Basic knowledge of vector derivatives.It is divided into the following categories:
1)向量 Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T对 x x x标量求导:
∂ Y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x ⋮ ∂ y m ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x}} \\ \cfrac{\partial{y_2}}{\partial{x}} \\ \vdots \\ \cfrac{\partial{y_m}}{\partial{x}} \end{bmatrix} ∂x∂Y=⎣⎡∂x∂y1∂x∂y2⋮∂x∂ym⎦⎤
如果 Y = [ y 1 , y 2 , . . . , y m ] Y=[y_1,y_2,...,y_m] Y=[y1,y2,...,ym]是行向量,derivation
∂ Y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x … ∂ y m ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x}} \space \cfrac{\partial{y_2}}{\partial{x}} \ldots \cfrac{\partial{y_m}}{\partial{x}} \end{bmatrix} ∂x∂Y=[∂x∂y1 ∂x∂y2…∂x∂ym]
2)标量 y y y对向量 X = [ x 1 , x 2 , . . . , x m ] T X=[x_1,x_2,...,x_m]^T X=[x1,x2,...,xm]T求导
∂ y ∂ X = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ⋮ ∂ y ∂ x m ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_1}} \\ \cfrac{\partial{y}}{\partial{x_2}} \\ \vdots \\ \cfrac{\partial{y}}{\partial{x_m}} \end{bmatrix} ∂X∂y=⎣⎡∂x1∂y∂x2∂y⋮∂xm∂y⎦⎤
如果 X = [ x 1 , x 2 , . . . , x m ] X=[x_1,x_2,...,x_m] X=[x1,x2,...,xm]为行向量:
∂ y ∂ X = [ ∂ y ∂ x 1 ∂ y ∂ x 2 … ∂ y ∂ x m ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_1}} \space \cfrac{\partial{y}}{\partial{x_2}} \ldots \cfrac{\partial{y}}{\partial{x_m}} \end{bmatrix} ∂X∂y=[∂x1∂y ∂x2∂y…∂xm∂y]
3)向量 Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T对向量 X = [ x 1 , x 2 , . . . , x n ] X=[x_1,x_2,...,x_n] X=[x1,x2,...,xn]求导
∂ Y ∂ X = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 … ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 … ∂ y 2 ∂ x n ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 … ∂ y m ∂ x n ] \cfrac{\partial{Y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x_1}} \space \space \cfrac{\partial{y_1}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_1}}{\partial{x_n}} \\ \cfrac{\partial{y_2}}{\partial{x_1}} \space \space \cfrac{\partial{y_2}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_2}}{\partial{x_n}} \\ \vdots \\ \cfrac{\partial{y_m}}{\partial{x_1}} \space \space \cfrac{\partial{y_m}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_m}}{\partial{x_n}} \end{bmatrix} ∂X∂Y=⎣⎡∂x1∂y1 ∂x2∂y1 … ∂xn∂y1∂x1∂y2 ∂x2∂y2 … ∂xn∂y2⋮∂x1∂ym ∂x2∂ym … ∂xn∂ym⎦⎤
Vector-to-vector derivation is also known as a Jacobian matrix,It is very common in optimization.
如果是矩阵的话,
如 Y Y Y是矩阵的时候,它的表达:
Y = [ y 11 y 12 … y 1 n y 21 y 22 … y 2 n ⋮ y m 1 y m 2 … y m n ] Y=\begin{bmatrix} y_{11} \space \space y_{12} \space \space \ldots \space \space y_{1n} \\ y_{21} \space \space y_{22} \space \space \ldots \space \space y_{2n} \\ \vdots \\ y_{m1} \space \space y_{m2} \space \space \ldots \space \space y_{mn} \end{bmatrix} Y=⎣⎡y11 y12 … y1ny21 y22 … y2n⋮ym1 ym2 … ymn⎦⎤
如 X X X是矩阵的时候,它的表达:
X = [ x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ x m 1 x m 2 … x m n ] X=\begin{bmatrix} x_{11} \space \space x_{12} \space \space \ldots \space \space x_{1n} \\ x_{21} \space \space x_{22} \space \space \ldots \space \space x_{2n} \\ \vdots \\ x_{m1} \space \space x_{m2} \space \space \ldots \space \space x_{mn} \end{bmatrix} X=⎣⎡x11 x12 … x1nx21 x22 … x2n⋮xm1 xm2 … xmn⎦⎤
There are two kinds of derivatives of matrices,如下
1)矩阵 Y Y Y对标量 x x x求导:
∂ Y ∂ x = [ ∂ y 11 ∂ x ∂ y 12 ∂ x … ∂ y 1 n ∂ x ∂ y 21 ∂ x ∂ y 22 ∂ x … ∂ y 2 n ∂ x ⋮ ∂ y m 1 ∂ x ∂ y m 2 ∂ x … ∂ y m n ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_{11}}}{\partial{x}} \space \space \cfrac{\partial{y_{12}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{1n}}}{\partial{x}} \\ \cfrac{\partial{y_{21}}}{\partial{x}} \space \space \cfrac{\partial{y_{22}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{2n}}}{\partial{x}} \\ \vdots \\ \cfrac{\partial{y_{m1}}}{\partial{x}} \space \space \cfrac{\partial{y_{m2}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{mn}}}{\partial{x}} \end{bmatrix} ∂x∂Y=⎣⎡∂x∂y11 ∂x∂y12 … ∂x∂y1n∂x∂y21 ∂x∂y22 … ∂x∂y2n⋮∂x∂ym1 ∂x∂ym2 … ∂x∂ymn⎦⎤
2)标量 y y y对矩阵 X X X求导:
∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 12 … ∂ y ∂ x 1 n ∂ y ∂ x 21 ∂ y ∂ x 22 … ∂ y ∂ x 2 n ⋮ ∂ y ∂ x m 1 ∂ y ∂ x m 2 … ∂ y ∂ x m n ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_{11}}} \space \space \cfrac{\partial{y}}{\partial{x_{12}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{1n}}} \\ \cfrac{\partial{y}}{\partial{x_{21}}} \space \space \cfrac{\partial{y}}{\partial{x_{22}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{2n}}} \\ \vdots \\ \cfrac{\partial{y}}{\partial{x_{m1}}} \space \space \cfrac{\partial{y}}{\partial{x_{m2}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{mn}}} \end{bmatrix} ∂X∂y=⎣⎡∂x11∂y ∂x12∂y … ∂x1n∂y∂x21∂y ∂x22∂y … ∂x2n∂y⋮∂xm1∂y ∂xm2∂y … ∂xmn∂y⎦⎤
This is the derivative definition of the basic vector.Based on these definitions and some basic algorithms,Get some combined formulas.Very useful in the programming of geometric algorithms.
Derivation of vectors in formulas,In general formulas there will be multiple vectors and vector dependencies,因此,When taking the derivative, we hope that it can satisfy the chain rule of scalar derivative.
Suppose the vectors are interdependent as : U − > V − > W U->V->W U−>V−>W
Then the partial derivative is :
∂ W ∂ U = ∂ W ∂ V ∂ V ∂ U \cfrac{\partial{W}}{\partial{U}}=\cfrac{\partial{W}}{\partial{V}} \space \space \cfrac{\partial{V}}{\partial{U}} ∂U∂W=∂V∂W ∂U∂V
证明:It is only necessary to unpack and derive the elements one by one:
∂ w i ∂ u j = ∑ k ∂ w i ∂ v k ∂ v k ∂ u j = ∂ w i ∂ V ∂ V ∂ u j \cfrac{\partial{w_i}}{\partial{u_j}} = \sum_{k}\cfrac{\partial{w_i}}{\partial{v_k}}\space \cfrac{\partial{v_k}}{\partial{u_j}} =\cfrac{\partial{w_i}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{u_j}} ∂uj∂wi=k∑∂vk∂wi ∂uj∂vk=∂V∂wi ∂uj∂V
由此可见 ∂ w i ∂ u j \cfrac{\partial{w_i}}{\partial{u_j}} ∂uj∂wiis equal to the matrix ∂ W ∂ V \cfrac{\partial{W}}{\partial{V}} ∂V∂W第 i i i行和矩阵 ∂ V ∂ U \cfrac{\partial{V}}{\partial{U}} ∂U∂V的第 j j j列的内积,This is the multiplication definition of a matrix.
It can easily be generalized to scenarios with multiple layers of intermediate variables.
The situation encountered in variables is often formulated as F F F为一个实数,When the intermediate variables are all vectors,它的依赖为:
X − > V − > U − > f X->V->U->f X−>V−>U−>f
According to the transitivity of the Jacobian matrix, it can be obtained as follows:
∂ F ∂ X = ∂ F ∂ U ∂ U ∂ V ∂ V ∂ X \cfrac{\partial{F}}{\partial{X}} = \cfrac{\partial{F}}{\partial{U}}\space \cfrac{\partial{U}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{X}} ∂X∂F=∂U∂F ∂V∂U ∂X∂V
因为 f f f为标量,So it is written as follows:
∂ f ∂ X T = ∂ f ∂ U T ∂ U ∂ V ∂ V ∂ X \cfrac{\partial{f}}{\partial{X^T}} = \cfrac{\partial{f}}{\partial{U^T}}\space \cfrac{\partial{U}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{X}} ∂XT∂f=∂UT∂f ∂V∂U ∂X∂V
为了便于计算,The above needs to be converted to row vectors U T U^T UT, X T X^T XT计算.这个非常重要.
The following introduces the commonly used formulas encountered when calculating the reciprocal of a vector,They are of the following two categories
1)两向量 U U U, V V V(列向量)The result of the dot product is pair W W W求导:
∂ ( U T V ) ∂ W = ( ∂ U ∂ W ) T V + ( ∂ V ∂ W ) T U ( 4 ) \cfrac{\partial{(U^T V)}}{\partial{W}} = ( \cfrac{\partial{U}}{\partial{W}})^T V + ( \cfrac{\partial{V}}{\partial{W}})^T U \space (4) ∂W∂(UTV)=(∂W∂U)TV+(∂W∂V)TU (4)
The derivative formula of the dot product proves that it is added later.
证明:假设 U = [ u 0 u 1 u 3 ] U=\begin{bmatrix} u_0 \\ u_1 \\ u_3 \end{bmatrix} U=⎣⎡u0u1u3⎦⎤ 和 V = [ v 0 v 1 v 3 ] V=\begin{bmatrix} v_0 \\ v_1 \\ v_3 \end{bmatrix} V=⎣⎡v0v1v3⎦⎤ ,They are three-dimensional vectors.Get the dot multiplication as f = U T V f=U^T V f=UTV,It is a scalar for : f = u 0 v 0 + u 1 v 1 + u 2 v 2 f=u_0v_0+u_1v_1+u_2v_2 f=u0v0+u1v1+u2v2,Then ask it to be right W W W的导数
∂ f ∂ W = ∂ ( u 0 v 0 + u 1 v 1 + u 2 v 2 ) ∂ W = ∂ u 0 ∂ W v 0 + ∂ v 0 ∂ W u 0 + ∂ u 1 ∂ W v 1 + ∂ v 1 ∂ W u 1 + ∂ u 2 ∂ W v 2 + ∂ v 2 ∂ W u 2 = ( ∂ u 0 ∂ W v 0 + ∂ u 1 ∂ W v 1 + ∂ u 2 ∂ W v 2 ) + ( ∂ v 0 ∂ W u 0 + ∂ v 1 ∂ W u 1 + ∂ v 2 ∂ W u 2 ) = ( ∂ U ∂ W ) T V + ( ∂ V ∂ W ) T U \cfrac{\partial{f}}{\partial{W}}=\cfrac{\partial{(u_0v_0+u_1v_1+u_2v_2)}}{\partial{W}} \\ =\cfrac{\partial{u_0}}{\partial{W}}v_0 + \cfrac{\partial{v_0}}{\partial{W}}u_0 + \cfrac{\partial{u_1}}{\partial{W}}v_1 + \cfrac{\partial{v_1}}{\partial{W}}u_1 + \cfrac{\partial{u_2}}{\partial{W}}v_2 + \cfrac{\partial{v_2}}{\partial{W}}u_2 \\ =(\cfrac{\partial{u_0}}{\partial{W}}v_0 + \cfrac{\partial{u_1}}{\partial{W}}v_1 + \cfrac{\partial{u_2}}{\partial{W}}v_2) + (\cfrac{\partial{v_0}}{\partial{W}}u_0 + \cfrac{\partial{v_1}}{\partial{W}}u_1 + \cfrac{\partial{v_2}}{\partial{W}}u_2) \\ =( \cfrac{\partial{U}}{\partial{W}})^T V + ( \cfrac{\partial{V}}{\partial{W}})^T U ∂W∂f=∂W∂(u0v0+u1v1+u2v2)=∂W∂u0v0+∂W∂v0u0+∂W∂u1v1+∂W∂v1u1+∂W∂u2v2+∂W∂v2u2=(∂W∂u0v0+∂W∂u1v1+∂W∂u2v2)+(∂W∂v0u0+∂W∂v1u1+∂W∂v2u2)=(∂W∂U)TV+(∂W∂V)TU
It can be generalized to other dimensions.证明完毕.
如果 W W Wis that the scalar is actually directly substituted ( 4 ) (4) (4)即可.但是如果 W W W为向量,在计算中,一般都是把 W W W变成行向量.因为定义jacobi矩阵是,Derivation of a column vector with respect to a row vector.因此 W W W可以表示为 W T W^T WT(行向量),所以 ( 4 ) (4) (4),写成:
∂ ( U T V ) ∂ W T = ( ∂ U ∂ W T ) T V + ( ∂ V ∂ W T ) T U \cfrac{\partial{(U^T V)}}{\partial{W^T}} = ( \cfrac{\partial{U}}{\partial{W^T}})^T V + ( \cfrac{\partial{V}}{\partial{W^T}})^T U ∂WT∂(UTV)=(∂WT∂U)TV+(∂WT∂V)TU
2)两个向量 U U U, V V V (列向量)The result of the cross product is pair W W W求导:
∂ ( U × V ) ∂ W = − S k e w ( V ) ( ∂ U ∂ W ) + S k e w ( U ) ( ∂ V ∂ W ) ( 5 ) \cfrac{\partial{(U \times V)}}{\partial{W}} = -Skew(V)( \cfrac{\partial{U}}{\partial{W}}) +Skew(U)( \cfrac{\partial{V}}{\partial{W}}) \space (5) ∂W∂(U×V)=−Skew(V)(∂W∂U)+Skew(U)(∂W∂V) (5)
其中
S k e w ( U ) = [ 0 − U 3 U 2 U 3 0 − U 1 − U 2 U 1 0 ] Skew(U) = \begin{bmatrix} 0 \space \space -U_3 \space \space U_2 \\ U_3 \space \space 0 \space \space -U_1 \\ -U_2 \space \space U_1 \space \space 0 \end{bmatrix} Skew(U)=⎣⎡0 −U3 U2U3 0 −U1−U2 U1 0⎦⎤
其中 S k e w ( V ) Skew(V) Skew(V)is the matrix that converts the cross product to the dot product.It's very easy to prove,Because it is just a matrix expansion.
For cross-multiplication of multiple vectors,The formula needs to be transformed.The cross product satisfies the distribution ratio.
∂ ( U × V ) ∂ W = ( ∂ U ∂ W ) × V + U × ( ∂ V ∂ W ) ( 6 ) \cfrac{\partial{(U \times V)}}{\partial{W}} = ( \cfrac{\partial{U}}{\partial{W}}) \times V + U \times ( \cfrac{\partial{V}}{\partial{W}}) \space (6) ∂W∂(U×V)=(∂W∂U)×V+U×(∂W∂V) (6)
The proof will be added later.(5)和(6)The formulas for both are figured out.只是表达形式不同.Their transformations will be added later.
证明:假设 U = [ u 0 u 1 u 3 ] U=\begin{bmatrix} u_0 \\ u_1 \\ u_3 \end{bmatrix} U=⎣⎡u0u1u3⎦⎤ 和 V = [ v 0 v 1 v 3 ] V=\begin{bmatrix} v_0 \\ v_1 \\ v_3 \end{bmatrix} V=⎣⎡v0v1v3⎦⎤ ,They are three-dimensional vectors.
U × V = [ i j k u 0 u 1 u 2 v 0 v 1 v 2 ] = ( u 1 v 2 − u 1 v 2 ) i + ( u 2 v 0 − u 0 v 2 ) j + ( u 0 v 1 − u 1 v 0 ) k U \times V = \begin{bmatrix} i \space \space j \space \space k \\ u_0 \space \space u_1 \space \space u_2 \\ v_0 \space \space v_1 \space \space v_2 \end{bmatrix} \\ = (u_1v_2 - u_1v_2)i+ (u_2v_0 - u_0v_2)j+ (u_0v_1 - u_1v_0)k U×V=⎣⎡i j ku0 u1 u2v0 v1 v2⎦⎤=(u1v2−u1v2)i+(u2v0−u0v2)j+(u0v1−u1v0)k
它是一个向量,因此展开后,It is expressed as follows:
U × V = [ ( u 1 v 2 − u 2 v 1 ) ( u 2 v 0 − u 0 v 2 ) ( u 0 v 1 − u 1 v 0 ) ] U \times V = \begin{bmatrix} (u_1v_2 - u_2v_1) \\ (u_2v_0 - u_0v_2) \\ (u_0v_1 - u_1v_0) \end{bmatrix} U×V=⎣⎡(u1v2−u2v1)(u2v0−u0v2)(u0v1−u1v0)⎦⎤
After expansion, we get the following:
∂ ( U × V ) ∂ W = [ ∂ ( u 1 v 2 − u 2 v 1 ) ∂ W ∂ ( u 2 v 0 − u 0 v 2 ) ∂ W ∂ ( u 0 v 1 − u 1 v 0 ) ∂ W ] = ∂ ( u 1 v 2 − u 2 v 1 ) ∂ W I + ∂ ( u 2 v 0 − u 0 v 2 ) ∂ W J + ∂ ( u 0 v 1 − u 1 v 0 ) ∂ W K = ( ∂ u 1 ∂ W ∗ v 2 + ∂ v 2 ∂ W ∗ u 1 − ∂ u 2 ∂ W ∗ v 1 − ∂ v 1 ∂ W ∗ u 2 ) I + ( ∂ u 2 ∂ W ∗ v 0 + ∂ v 0 ∂ W ∗ u 2 − ∂ u 0 ∂ W ∗ v 2 − ∂ v 2 ∂ W ∗ u 0 ) J + ( ∂ u 0 ∂ W ∗ v 1 + ∂ v 1 ∂ W ∗ u 0 − ∂ u 1 ∂ W ∗ v 0 − ∂ v 0 ∂ W ∗ u 1 ) K = [ ( ∂ u 1 ∂ W ∗ v 2 − ∂ u 2 ∂ W ∗ v 1 ) I + ( ∂ u 2 ∂ W ∗ v 0 − ∂ u 0 ∂ W ∗ v 2 ) J + ( ∂ u 0 ∂ W ∗ v 1 − ∂ u 1 ∂ W ∗ v 0 ) K ] + [ ( ∂ v 2 ∂ W ∗ u 1 − ∂ v 1 ∂ W ∗ u 2 ) I + ( ∂ v 0 ∂ W ∗ u 2 − ∂ v 2 ∂ W ∗ u 0 ) J + ( ∂ v 1 ∂ W ∗ u 0 − ∂ v 0 ∂ W ∗ u 1 ) K ] = ( ∂ U ∂ W ) × V − ( ∂ V ∂ W ) × U = − V × ( ∂ U ∂ W ) + U × ( ∂ V ∂ W ) = − S k e w ( V ) ( ∂ U ∂ W ) + S k e w ( U ) ( ∂ V ∂ W ) \cfrac{\partial{(U \times V)}}{\partial{W}} = \begin{bmatrix} \cfrac{\partial{(u_1v_2 - u_2v_1) }}{\partial{W}} \\ \cfrac{\partial{ (u_2v_0 - u_0v_2)}}{\partial{W}}\\ \cfrac{\partial{ (u_0v_1 - u_1v_0)}}{\partial{W}}\\ \end{bmatrix} = \cfrac{\partial{(u_1v_2 - u_2v_1) }}{\partial{W}} I + \cfrac{\partial{ (u_2v_0 - u_0v_2)}}{\partial{W}}J+ \cfrac{\partial{ (u_0v_1 - u_1v_0)}}{\partial{W}}K \\ = (\cfrac{\partial{u_1}}{\partial{W}}*v_2+\cfrac{\partial{v_2}}{\partial{W}}*u_1-\cfrac{\partial{u_2}}{\partial{W}}*v_1-\cfrac{\partial{v_1}}{\partial{W}}*u_2)I+(\cfrac{\partial{u_2}}{\partial{W}}*v_0+\cfrac{\partial{v_0}}{\partial{W}}*u_2-\cfrac{\partial{u_0}}{\partial{W}}*v_2-\cfrac{\partial{v_2}}{\partial{W}}*u_0)J + (\cfrac{\partial{u_0}}{\partial{W}}*v_1+\cfrac{\partial{v_1}}{\partial{W}}*u_0-\cfrac{\partial{u_1}}{\partial{W}}*v_0-\cfrac{\partial{v_0}}{\partial{W}}*u_1)K \\ =[(\cfrac{\partial{u_1}}{\partial{W}}*v_2 -\cfrac{\partial{u_2}}{\partial{W}}*v_1)I + (\cfrac{\partial{u_2}}{\partial{W}}*v_0 - \cfrac{\partial{u_0}}{\partial{W}}*v_2)J + (\cfrac{\partial{u_0}}{\partial{W}}*v_1 - \cfrac{\partial{u_1}}{\partial{W}}*v_0)K] + [(\cfrac{\partial{v_2}}{\partial{W}}*u_1 -\cfrac{\partial{v_1}}{\partial{W}}*u_2)I + (\cfrac{\partial{v_0}}{\partial{W}}*u_2 - \cfrac{\partial{v_2}}{\partial{W}}*u_0)J + (\cfrac{\partial{v_1}}{\partial{W}}*u_0 - \cfrac{\partial{v_0}}{\partial{W}}*u_1)K] \\ =( \cfrac{\partial{U}}{\partial{W}}) \times V - ( \cfrac{\partial{V}}{\partial{W}}) \times U = -V \times (\cfrac{\partial{U}}{\partial{W}}) + U \times ( \cfrac{\partial{V}}{\partial{W}})= -Skew(V)( \cfrac{\partial{U}}{\partial{W}}) +Skew(U)( \cfrac{\partial{V}}{\partial{W}}) ∂W∂(U×V)=⎣⎡∂W∂(u1v2−u2v1)∂W∂(u2v0−u0v2)∂W∂(u0v1−u1v0)⎦⎤=∂W∂(u1v2−u2v1)I+∂W∂(u2v0−u0v2)J+∂W∂(u0v1−u1v0)K=(∂W∂u1∗v2+∂W∂v2∗u1−∂W∂u2∗v1−∂W∂v1∗u2)I+(∂W∂u2∗v0+∂W∂v0∗u2−∂W∂u0∗v2−∂W∂v2∗u0)J+(∂W∂u0∗v1+∂W∂v1∗u0−∂W∂u1∗v0−∂W∂v0∗u1)K=[(∂W∂u1∗v2−∂W∂u2∗v1)I+(∂W∂u2∗v0−∂W∂u0∗v2)J+(∂W∂u0∗v1−∂W∂u1∗v0)K]+[(∂W∂v2∗u1−∂W∂v1∗u2)I+(∂W∂v0∗u2−∂W∂v2∗u0)J+(∂W∂v1∗u0−∂W∂v0∗u1)K]=(∂W∂U)×V−(∂W∂V)×U=−V×(∂W∂U)+U×(∂W∂V)=−Skew(V)(∂W∂U)+Skew(U)(∂W∂V)
the assumptions therein a , b a,b a,b为向量,Easy to get as follows
a × b = − b × a a \times b = -b \times a a×b=−b×a
It can be extended from three-dimensional to multi-dimensional vectors.证明完毕
边栏推荐
- Redis下载与安装
- The calculation proof of the intersection of the space line and the plane and its source code
- How to use Swagger, say goodbye to postman
- 新人误删数据,组长巧用MySQL主从复制延迟挽回损失
- Pioneer in Distributed Systems - Leslie Lambert
- UDP和TCP使用同一个端口,可行吗?
- 使用 Grafana 的 Redis Data Source 插件监控 Redis
- Data types of Redis6
- Test and Development Engineer Growth Diary 009 - Environment Pai Pai Station: Development Environment, Test Environment, Production Environment, UAT Environment, Simulation Environment
- 向量三重积的等式推导证明
猜你喜欢

深度学习:线性回归模型

Distance calculation from space vertex to straight line and its source code

DNS域名解析服务

New breakthrough in artificial muscle smart materials

How to understand plucker coordinates (geometric understanding)

The calculation proof of the intersection of the space line and the plane and its source code

When does MySQL use table locks and when does it use row locks?

The introduction of AI meta-learning into neuroscience, the medical effect is expected to improve accurately

Camera coordinate system, world coordinate system, pixel coordinate system conversion, and Fov conversion of OPENGLDEFocal Length and Opengl

“AI教练”请进家,家庭智能健身蓬勃发展
随机推荐
The calculation and source code of the straight line intersecting the space plane
空间顶点到平面的距离计算的证明及其源码
Swagger使用方式,告别postman
How to use Swagger, say goodbye to postman
What happens when @Bean and @Component are used on the same class?
numpy 多维数组ndarray的详解
The terminal connection tools, rolling Xshell
The usage of window.open(), js opens a new form
@Bean 与 @Component 用在同一个类上,会怎样?
Playing script killing with AI: actually more involved than me
空间平面相交的直线的计算及其源码
Test Development Engineer Growth Diary 008 - Talking About Some Bugs/Use Case Management Platform/Collaboration Platform
Ali two sides: Sentinel vs Hystrix comparison, how to choose?
RAID disk array
Ali Ermian: How many cluster solutions does Redis have?I answered 4
AI可通过X光片识别种族,但没人知道为什么
华为发布“十大发明”,包含计算、智能驾驶等新领域
Multithreading basics (multithreaded memory, security, communication, thread pools and blocking queues)
UDP和TCP使用同一个端口,可行吗?
Data types of Redis6