当前位置:网站首页>Derivative Operations on Vectors and Derivative Operations on Vector Cross and Dot Products
Derivative Operations on Vectors and Derivative Operations on Vector Cross and Dot Products
2022-07-30 07:50:00 【sunset stained ramp】
目的:I've been writing optimized code recently,The variables in the function need to be differentiated,and find their Jacobian matrices.Therefore, the derivation of vectors and matrices is used.
A vector can be represented as follows: Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T
Basic knowledge of vector derivatives.It is divided into the following categories:
1)向量 Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T对 x x x标量求导:
∂ Y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x ⋮ ∂ y m ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x}} \\ \cfrac{\partial{y_2}}{\partial{x}} \\ \vdots \\ \cfrac{\partial{y_m}}{\partial{x}} \end{bmatrix} ∂x∂Y=⎣⎡∂x∂y1∂x∂y2⋮∂x∂ym⎦⎤
如果 Y = [ y 1 , y 2 , . . . , y m ] Y=[y_1,y_2,...,y_m] Y=[y1,y2,...,ym]是行向量,derivation
∂ Y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x … ∂ y m ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x}} \space \cfrac{\partial{y_2}}{\partial{x}} \ldots \cfrac{\partial{y_m}}{\partial{x}} \end{bmatrix} ∂x∂Y=[∂x∂y1 ∂x∂y2…∂x∂ym]
2)标量 y y y对向量 X = [ x 1 , x 2 , . . . , x m ] T X=[x_1,x_2,...,x_m]^T X=[x1,x2,...,xm]T求导
∂ y ∂ X = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ⋮ ∂ y ∂ x m ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_1}} \\ \cfrac{\partial{y}}{\partial{x_2}} \\ \vdots \\ \cfrac{\partial{y}}{\partial{x_m}} \end{bmatrix} ∂X∂y=⎣⎡∂x1∂y∂x2∂y⋮∂xm∂y⎦⎤
如果 X = [ x 1 , x 2 , . . . , x m ] X=[x_1,x_2,...,x_m] X=[x1,x2,...,xm]为行向量:
∂ y ∂ X = [ ∂ y ∂ x 1 ∂ y ∂ x 2 … ∂ y ∂ x m ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_1}} \space \cfrac{\partial{y}}{\partial{x_2}} \ldots \cfrac{\partial{y}}{\partial{x_m}} \end{bmatrix} ∂X∂y=[∂x1∂y ∂x2∂y…∂xm∂y]
3)向量 Y = [ y 1 , y 2 , . . . , y m ] T Y=[y_1,y_2,...,y_m]^T Y=[y1,y2,...,ym]T对向量 X = [ x 1 , x 2 , . . . , x n ] X=[x_1,x_2,...,x_n] X=[x1,x2,...,xn]求导
∂ Y ∂ X = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 … ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 … ∂ y 2 ∂ x n ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 … ∂ y m ∂ x n ] \cfrac{\partial{Y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y_1}}{\partial{x_1}} \space \space \cfrac{\partial{y_1}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_1}}{\partial{x_n}} \\ \cfrac{\partial{y_2}}{\partial{x_1}} \space \space \cfrac{\partial{y_2}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_2}}{\partial{x_n}} \\ \vdots \\ \cfrac{\partial{y_m}}{\partial{x_1}} \space \space \cfrac{\partial{y_m}}{\partial{x_2}} \space \space \ldots \space \space \cfrac{\partial{y_m}}{\partial{x_n}} \end{bmatrix} ∂X∂Y=⎣⎡∂x1∂y1 ∂x2∂y1 … ∂xn∂y1∂x1∂y2 ∂x2∂y2 … ∂xn∂y2⋮∂x1∂ym ∂x2∂ym … ∂xn∂ym⎦⎤
Vector-to-vector derivation is also known as a Jacobian matrix,It is very common in optimization.
如果是矩阵的话,
如 Y Y Y是矩阵的时候,它的表达:
Y = [ y 11 y 12 … y 1 n y 21 y 22 … y 2 n ⋮ y m 1 y m 2 … y m n ] Y=\begin{bmatrix} y_{11} \space \space y_{12} \space \space \ldots \space \space y_{1n} \\ y_{21} \space \space y_{22} \space \space \ldots \space \space y_{2n} \\ \vdots \\ y_{m1} \space \space y_{m2} \space \space \ldots \space \space y_{mn} \end{bmatrix} Y=⎣⎡y11 y12 … y1ny21 y22 … y2n⋮ym1 ym2 … ymn⎦⎤
如 X X X是矩阵的时候,它的表达:
X = [ x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ x m 1 x m 2 … x m n ] X=\begin{bmatrix} x_{11} \space \space x_{12} \space \space \ldots \space \space x_{1n} \\ x_{21} \space \space x_{22} \space \space \ldots \space \space x_{2n} \\ \vdots \\ x_{m1} \space \space x_{m2} \space \space \ldots \space \space x_{mn} \end{bmatrix} X=⎣⎡x11 x12 … x1nx21 x22 … x2n⋮xm1 xm2 … xmn⎦⎤
There are two kinds of derivatives of matrices,如下
1)矩阵 Y Y Y对标量 x x x求导:
∂ Y ∂ x = [ ∂ y 11 ∂ x ∂ y 12 ∂ x … ∂ y 1 n ∂ x ∂ y 21 ∂ x ∂ y 22 ∂ x … ∂ y 2 n ∂ x ⋮ ∂ y m 1 ∂ x ∂ y m 2 ∂ x … ∂ y m n ∂ x ] \cfrac{\partial{Y}}{\partial{x}}=\begin{bmatrix} \cfrac{\partial{y_{11}}}{\partial{x}} \space \space \cfrac{\partial{y_{12}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{1n}}}{\partial{x}} \\ \cfrac{\partial{y_{21}}}{\partial{x}} \space \space \cfrac{\partial{y_{22}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{2n}}}{\partial{x}} \\ \vdots \\ \cfrac{\partial{y_{m1}}}{\partial{x}} \space \space \cfrac{\partial{y_{m2}}}{\partial{x}} \space \space \ldots \space \space \cfrac{\partial{y_{mn}}}{\partial{x}} \end{bmatrix} ∂x∂Y=⎣⎡∂x∂y11 ∂x∂y12 … ∂x∂y1n∂x∂y21 ∂x∂y22 … ∂x∂y2n⋮∂x∂ym1 ∂x∂ym2 … ∂x∂ymn⎦⎤
2)标量 y y y对矩阵 X X X求导:
∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 12 … ∂ y ∂ x 1 n ∂ y ∂ x 21 ∂ y ∂ x 22 … ∂ y ∂ x 2 n ⋮ ∂ y ∂ x m 1 ∂ y ∂ x m 2 … ∂ y ∂ x m n ] \cfrac{\partial{y}}{\partial{X}}=\begin{bmatrix} \cfrac{\partial{y}}{\partial{x_{11}}} \space \space \cfrac{\partial{y}}{\partial{x_{12}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{1n}}} \\ \cfrac{\partial{y}}{\partial{x_{21}}} \space \space \cfrac{\partial{y}}{\partial{x_{22}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{2n}}} \\ \vdots \\ \cfrac{\partial{y}}{\partial{x_{m1}}} \space \space \cfrac{\partial{y}}{\partial{x_{m2}}} \space \space \ldots \space \space \cfrac{\partial{y}}{\partial{x_{mn}}} \end{bmatrix} ∂X∂y=⎣⎡∂x11∂y ∂x12∂y … ∂x1n∂y∂x21∂y ∂x22∂y … ∂x2n∂y⋮∂xm1∂y ∂xm2∂y … ∂xmn∂y⎦⎤
This is the derivative definition of the basic vector.Based on these definitions and some basic algorithms,Get some combined formulas.Very useful in the programming of geometric algorithms.
Derivation of vectors in formulas,In general formulas there will be multiple vectors and vector dependencies,因此,When taking the derivative, we hope that it can satisfy the chain rule of scalar derivative.
Suppose the vectors are interdependent as : U − > V − > W U->V->W U−>V−>W
Then the partial derivative is :
∂ W ∂ U = ∂ W ∂ V ∂ V ∂ U \cfrac{\partial{W}}{\partial{U}}=\cfrac{\partial{W}}{\partial{V}} \space \space \cfrac{\partial{V}}{\partial{U}} ∂U∂W=∂V∂W ∂U∂V
证明:It is only necessary to unpack and derive the elements one by one:
∂ w i ∂ u j = ∑ k ∂ w i ∂ v k ∂ v k ∂ u j = ∂ w i ∂ V ∂ V ∂ u j \cfrac{\partial{w_i}}{\partial{u_j}} = \sum_{k}\cfrac{\partial{w_i}}{\partial{v_k}}\space \cfrac{\partial{v_k}}{\partial{u_j}} =\cfrac{\partial{w_i}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{u_j}} ∂uj∂wi=k∑∂vk∂wi ∂uj∂vk=∂V∂wi ∂uj∂V
由此可见 ∂ w i ∂ u j \cfrac{\partial{w_i}}{\partial{u_j}} ∂uj∂wiis equal to the matrix ∂ W ∂ V \cfrac{\partial{W}}{\partial{V}} ∂V∂W第 i i i行和矩阵 ∂ V ∂ U \cfrac{\partial{V}}{\partial{U}} ∂U∂V的第 j j j列的内积,This is the multiplication definition of a matrix.
It can easily be generalized to scenarios with multiple layers of intermediate variables.
The situation encountered in variables is often formulated as F F F为一个实数,When the intermediate variables are all vectors,它的依赖为:
X − > V − > U − > f X->V->U->f X−>V−>U−>f
According to the transitivity of the Jacobian matrix, it can be obtained as follows:
∂ F ∂ X = ∂ F ∂ U ∂ U ∂ V ∂ V ∂ X \cfrac{\partial{F}}{\partial{X}} = \cfrac{\partial{F}}{\partial{U}}\space \cfrac{\partial{U}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{X}} ∂X∂F=∂U∂F ∂V∂U ∂X∂V
因为 f f f为标量,So it is written as follows:
∂ f ∂ X T = ∂ f ∂ U T ∂ U ∂ V ∂ V ∂ X \cfrac{\partial{f}}{\partial{X^T}} = \cfrac{\partial{f}}{\partial{U^T}}\space \cfrac{\partial{U}}{\partial{V}} \space \cfrac{\partial{V}}{\partial{X}} ∂XT∂f=∂UT∂f ∂V∂U ∂X∂V
为了便于计算,The above needs to be converted to row vectors U T U^T UT, X T X^T XT计算.这个非常重要.
The following introduces the commonly used formulas encountered when calculating the reciprocal of a vector,They are of the following two categories
1)两向量 U U U, V V V(列向量)The result of the dot product is pair W W W求导:
∂ ( U T V ) ∂ W = ( ∂ U ∂ W ) T V + ( ∂ V ∂ W ) T U ( 4 ) \cfrac{\partial{(U^T V)}}{\partial{W}} = ( \cfrac{\partial{U}}{\partial{W}})^T V + ( \cfrac{\partial{V}}{\partial{W}})^T U \space (4) ∂W∂(UTV)=(∂W∂U)TV+(∂W∂V)TU (4)
The derivative formula of the dot product proves that it is added later.
证明:假设 U = [ u 0 u 1 u 3 ] U=\begin{bmatrix} u_0 \\ u_1 \\ u_3 \end{bmatrix} U=⎣⎡u0u1u3⎦⎤ 和 V = [ v 0 v 1 v 3 ] V=\begin{bmatrix} v_0 \\ v_1 \\ v_3 \end{bmatrix} V=⎣⎡v0v1v3⎦⎤ ,They are three-dimensional vectors.Get the dot multiplication as f = U T V f=U^T V f=UTV,It is a scalar for : f = u 0 v 0 + u 1 v 1 + u 2 v 2 f=u_0v_0+u_1v_1+u_2v_2 f=u0v0+u1v1+u2v2,Then ask it to be right W W W的导数
∂ f ∂ W = ∂ ( u 0 v 0 + u 1 v 1 + u 2 v 2 ) ∂ W = ∂ u 0 ∂ W v 0 + ∂ v 0 ∂ W u 0 + ∂ u 1 ∂ W v 1 + ∂ v 1 ∂ W u 1 + ∂ u 2 ∂ W v 2 + ∂ v 2 ∂ W u 2 = ( ∂ u 0 ∂ W v 0 + ∂ u 1 ∂ W v 1 + ∂ u 2 ∂ W v 2 ) + ( ∂ v 0 ∂ W u 0 + ∂ v 1 ∂ W u 1 + ∂ v 2 ∂ W u 2 ) = ( ∂ U ∂ W ) T V + ( ∂ V ∂ W ) T U \cfrac{\partial{f}}{\partial{W}}=\cfrac{\partial{(u_0v_0+u_1v_1+u_2v_2)}}{\partial{W}} \\ =\cfrac{\partial{u_0}}{\partial{W}}v_0 + \cfrac{\partial{v_0}}{\partial{W}}u_0 + \cfrac{\partial{u_1}}{\partial{W}}v_1 + \cfrac{\partial{v_1}}{\partial{W}}u_1 + \cfrac{\partial{u_2}}{\partial{W}}v_2 + \cfrac{\partial{v_2}}{\partial{W}}u_2 \\ =(\cfrac{\partial{u_0}}{\partial{W}}v_0 + \cfrac{\partial{u_1}}{\partial{W}}v_1 + \cfrac{\partial{u_2}}{\partial{W}}v_2) + (\cfrac{\partial{v_0}}{\partial{W}}u_0 + \cfrac{\partial{v_1}}{\partial{W}}u_1 + \cfrac{\partial{v_2}}{\partial{W}}u_2) \\ =( \cfrac{\partial{U}}{\partial{W}})^T V + ( \cfrac{\partial{V}}{\partial{W}})^T U ∂W∂f=∂W∂(u0v0+u1v1+u2v2)=∂W∂u0v0+∂W∂v0u0+∂W∂u1v1+∂W∂v1u1+∂W∂u2v2+∂W∂v2u2=(∂W∂u0v0+∂W∂u1v1+∂W∂u2v2)+(∂W∂v0u0+∂W∂v1u1+∂W∂v2u2)=(∂W∂U)TV+(∂W∂V)TU
It can be generalized to other dimensions.证明完毕.
如果 W W Wis that the scalar is actually directly substituted ( 4 ) (4) (4)即可.但是如果 W W W为向量,在计算中,一般都是把 W W W变成行向量.因为定义jacobi矩阵是,Derivation of a column vector with respect to a row vector.因此 W W W可以表示为 W T W^T WT(行向量),所以 ( 4 ) (4) (4),写成:
∂ ( U T V ) ∂ W T = ( ∂ U ∂ W T ) T V + ( ∂ V ∂ W T ) T U \cfrac{\partial{(U^T V)}}{\partial{W^T}} = ( \cfrac{\partial{U}}{\partial{W^T}})^T V + ( \cfrac{\partial{V}}{\partial{W^T}})^T U ∂WT∂(UTV)=(∂WT∂U)TV+(∂WT∂V)TU
2)两个向量 U U U, V V V (列向量)The result of the cross product is pair W W W求导:
∂ ( U × V ) ∂ W = − S k e w ( V ) ( ∂ U ∂ W ) + S k e w ( U ) ( ∂ V ∂ W ) ( 5 ) \cfrac{\partial{(U \times V)}}{\partial{W}} = -Skew(V)( \cfrac{\partial{U}}{\partial{W}}) +Skew(U)( \cfrac{\partial{V}}{\partial{W}}) \space (5) ∂W∂(U×V)=−Skew(V)(∂W∂U)+Skew(U)(∂W∂V) (5)
其中
S k e w ( U ) = [ 0 − U 3 U 2 U 3 0 − U 1 − U 2 U 1 0 ] Skew(U) = \begin{bmatrix} 0 \space \space -U_3 \space \space U_2 \\ U_3 \space \space 0 \space \space -U_1 \\ -U_2 \space \space U_1 \space \space 0 \end{bmatrix} Skew(U)=⎣⎡0 −U3 U2U3 0 −U1−U2 U1 0⎦⎤
其中 S k e w ( V ) Skew(V) Skew(V)is the matrix that converts the cross product to the dot product.It's very easy to prove,Because it is just a matrix expansion.
For cross-multiplication of multiple vectors,The formula needs to be transformed.The cross product satisfies the distribution ratio.
∂ ( U × V ) ∂ W = ( ∂ U ∂ W ) × V + U × ( ∂ V ∂ W ) ( 6 ) \cfrac{\partial{(U \times V)}}{\partial{W}} = ( \cfrac{\partial{U}}{\partial{W}}) \times V + U \times ( \cfrac{\partial{V}}{\partial{W}}) \space (6) ∂W∂(U×V)=(∂W∂U)×V+U×(∂W∂V) (6)
The proof will be added later.(5)和(6)The formulas for both are figured out.只是表达形式不同.Their transformations will be added later.
证明:假设 U = [ u 0 u 1 u 3 ] U=\begin{bmatrix} u_0 \\ u_1 \\ u_3 \end{bmatrix} U=⎣⎡u0u1u3⎦⎤ 和 V = [ v 0 v 1 v 3 ] V=\begin{bmatrix} v_0 \\ v_1 \\ v_3 \end{bmatrix} V=⎣⎡v0v1v3⎦⎤ ,They are three-dimensional vectors.
U × V = [ i j k u 0 u 1 u 2 v 0 v 1 v 2 ] = ( u 1 v 2 − u 1 v 2 ) i + ( u 2 v 0 − u 0 v 2 ) j + ( u 0 v 1 − u 1 v 0 ) k U \times V = \begin{bmatrix} i \space \space j \space \space k \\ u_0 \space \space u_1 \space \space u_2 \\ v_0 \space \space v_1 \space \space v_2 \end{bmatrix} \\ = (u_1v_2 - u_1v_2)i+ (u_2v_0 - u_0v_2)j+ (u_0v_1 - u_1v_0)k U×V=⎣⎡i j ku0 u1 u2v0 v1 v2⎦⎤=(u1v2−u1v2)i+(u2v0−u0v2)j+(u0v1−u1v0)k
它是一个向量,因此展开后,It is expressed as follows:
U × V = [ ( u 1 v 2 − u 2 v 1 ) ( u 2 v 0 − u 0 v 2 ) ( u 0 v 1 − u 1 v 0 ) ] U \times V = \begin{bmatrix} (u_1v_2 - u_2v_1) \\ (u_2v_0 - u_0v_2) \\ (u_0v_1 - u_1v_0) \end{bmatrix} U×V=⎣⎡(u1v2−u2v1)(u2v0−u0v2)(u0v1−u1v0)⎦⎤
After expansion, we get the following:
∂ ( U × V ) ∂ W = [ ∂ ( u 1 v 2 − u 2 v 1 ) ∂ W ∂ ( u 2 v 0 − u 0 v 2 ) ∂ W ∂ ( u 0 v 1 − u 1 v 0 ) ∂ W ] = ∂ ( u 1 v 2 − u 2 v 1 ) ∂ W I + ∂ ( u 2 v 0 − u 0 v 2 ) ∂ W J + ∂ ( u 0 v 1 − u 1 v 0 ) ∂ W K = ( ∂ u 1 ∂ W ∗ v 2 + ∂ v 2 ∂ W ∗ u 1 − ∂ u 2 ∂ W ∗ v 1 − ∂ v 1 ∂ W ∗ u 2 ) I + ( ∂ u 2 ∂ W ∗ v 0 + ∂ v 0 ∂ W ∗ u 2 − ∂ u 0 ∂ W ∗ v 2 − ∂ v 2 ∂ W ∗ u 0 ) J + ( ∂ u 0 ∂ W ∗ v 1 + ∂ v 1 ∂ W ∗ u 0 − ∂ u 1 ∂ W ∗ v 0 − ∂ v 0 ∂ W ∗ u 1 ) K = [ ( ∂ u 1 ∂ W ∗ v 2 − ∂ u 2 ∂ W ∗ v 1 ) I + ( ∂ u 2 ∂ W ∗ v 0 − ∂ u 0 ∂ W ∗ v 2 ) J + ( ∂ u 0 ∂ W ∗ v 1 − ∂ u 1 ∂ W ∗ v 0 ) K ] + [ ( ∂ v 2 ∂ W ∗ u 1 − ∂ v 1 ∂ W ∗ u 2 ) I + ( ∂ v 0 ∂ W ∗ u 2 − ∂ v 2 ∂ W ∗ u 0 ) J + ( ∂ v 1 ∂ W ∗ u 0 − ∂ v 0 ∂ W ∗ u 1 ) K ] = ( ∂ U ∂ W ) × V − ( ∂ V ∂ W ) × U = − V × ( ∂ U ∂ W ) + U × ( ∂ V ∂ W ) = − S k e w ( V ) ( ∂ U ∂ W ) + S k e w ( U ) ( ∂ V ∂ W ) \cfrac{\partial{(U \times V)}}{\partial{W}} = \begin{bmatrix} \cfrac{\partial{(u_1v_2 - u_2v_1) }}{\partial{W}} \\ \cfrac{\partial{ (u_2v_0 - u_0v_2)}}{\partial{W}}\\ \cfrac{\partial{ (u_0v_1 - u_1v_0)}}{\partial{W}}\\ \end{bmatrix} = \cfrac{\partial{(u_1v_2 - u_2v_1) }}{\partial{W}} I + \cfrac{\partial{ (u_2v_0 - u_0v_2)}}{\partial{W}}J+ \cfrac{\partial{ (u_0v_1 - u_1v_0)}}{\partial{W}}K \\ = (\cfrac{\partial{u_1}}{\partial{W}}*v_2+\cfrac{\partial{v_2}}{\partial{W}}*u_1-\cfrac{\partial{u_2}}{\partial{W}}*v_1-\cfrac{\partial{v_1}}{\partial{W}}*u_2)I+(\cfrac{\partial{u_2}}{\partial{W}}*v_0+\cfrac{\partial{v_0}}{\partial{W}}*u_2-\cfrac{\partial{u_0}}{\partial{W}}*v_2-\cfrac{\partial{v_2}}{\partial{W}}*u_0)J + (\cfrac{\partial{u_0}}{\partial{W}}*v_1+\cfrac{\partial{v_1}}{\partial{W}}*u_0-\cfrac{\partial{u_1}}{\partial{W}}*v_0-\cfrac{\partial{v_0}}{\partial{W}}*u_1)K \\ =[(\cfrac{\partial{u_1}}{\partial{W}}*v_2 -\cfrac{\partial{u_2}}{\partial{W}}*v_1)I + (\cfrac{\partial{u_2}}{\partial{W}}*v_0 - \cfrac{\partial{u_0}}{\partial{W}}*v_2)J + (\cfrac{\partial{u_0}}{\partial{W}}*v_1 - \cfrac{\partial{u_1}}{\partial{W}}*v_0)K] + [(\cfrac{\partial{v_2}}{\partial{W}}*u_1 -\cfrac{\partial{v_1}}{\partial{W}}*u_2)I + (\cfrac{\partial{v_0}}{\partial{W}}*u_2 - \cfrac{\partial{v_2}}{\partial{W}}*u_0)J + (\cfrac{\partial{v_1}}{\partial{W}}*u_0 - \cfrac{\partial{v_0}}{\partial{W}}*u_1)K] \\ =( \cfrac{\partial{U}}{\partial{W}}) \times V - ( \cfrac{\partial{V}}{\partial{W}}) \times U = -V \times (\cfrac{\partial{U}}{\partial{W}}) + U \times ( \cfrac{\partial{V}}{\partial{W}})= -Skew(V)( \cfrac{\partial{U}}{\partial{W}}) +Skew(U)( \cfrac{\partial{V}}{\partial{W}}) ∂W∂(U×V)=⎣⎡∂W∂(u1v2−u2v1)∂W∂(u2v0−u0v2)∂W∂(u0v1−u1v0)⎦⎤=∂W∂(u1v2−u2v1)I+∂W∂(u2v0−u0v2)J+∂W∂(u0v1−u1v0)K=(∂W∂u1∗v2+∂W∂v2∗u1−∂W∂u2∗v1−∂W∂v1∗u2)I+(∂W∂u2∗v0+∂W∂v0∗u2−∂W∂u0∗v2−∂W∂v2∗u0)J+(∂W∂u0∗v1+∂W∂v1∗u0−∂W∂u1∗v0−∂W∂v0∗u1)K=[(∂W∂u1∗v2−∂W∂u2∗v1)I+(∂W∂u2∗v0−∂W∂u0∗v2)J+(∂W∂u0∗v1−∂W∂u1∗v0)K]+[(∂W∂v2∗u1−∂W∂v1∗u2)I+(∂W∂v0∗u2−∂W∂v2∗u0)J+(∂W∂v1∗u0−∂W∂v0∗u1)K]=(∂W∂U)×V−(∂W∂V)×U=−V×(∂W∂U)+U×(∂W∂V)=−Skew(V)(∂W∂U)+Skew(U)(∂W∂V)
the assumptions therein a , b a,b a,b为向量,Easy to get as follows
a × b = − b × a a \times b = -b \times a a×b=−b×a
It can be extended from three-dimensional to multi-dimensional vectors.证明完毕
边栏推荐
- Ali two sides: Sentinel vs Hystrix comparison, how to choose?
- The Society of Mind - Marvin Minsky
- The terminal connection tools, rolling Xshell
- Selenium02
- export , export default,import完整用法
- Detailed explanation of numpy multidimensional array ndarray
- Station B collapsed, what would you do if you were the developer in charge that night?
- Network Protocol 03 - Routing and NAT
- 你被MySQL 中的反斜杠 \\坑过吗?
- Linx common directory & file management commands & VI editor usage introduction
猜你喜欢
Huawei released "ten inventions", including computing, intelligent driving and other new fields
(GGG)JWT
你被MySQL 中的反斜杠 \\坑过吗?
Rodrigues:旋转矩阵的向量表达
STL源码剖析:临时对象的代码测试和理解
DHCP principle and configuration
Station B collapsed, what would you do if you were the developer in charge that night?
Ali two sides: List several tips for Api interface optimization
Equation Derivation Proof of Vector Triple Product
idea内置翻译插件
随机推荐
The usage of window.open(), js opens a new form
CTO说不建议我使用SELECT * ,这是为什么?
上传文件--文件类型大全,图片类型,文档类型,视频类型,压缩包类型
Boot process and service control
删除openstack中的僵尸实例
Test Development Engineer Growth Diary 010 - CI/CD/CT in Jenkins (Continuous Integration Build/Continuous Delivery/Continuous Testing)
How to understand plucker coordinates (geometric understanding)
STL source code analysis: conceptual understanding of iterators, and code testing.
New material under the plastic restriction order - polylactic acid (PLA)
MySql connecting to the server remotely
Table with tens of millions of data, how to query the fastest?
New breakthrough in artificial muscle smart materials
Let the "label" content in Baidu map generator expand--solution
matlab机器学习_01
Headline 2: there are several kinds of common SQL errors in MySQL usage?
大飞机C919都用了哪些新材料?
这个终端连接工具,碾压Xshell
不会吧,Log4j 漏洞还没有完全修复?
Test Development Engineer Growth Diary 015 - Top 20 Test Interview Questions
Test the basics 02