当前位置:网站首页>How to understand plucker coordinates (geometric understanding)
How to understand plucker coordinates (geometric understanding)
2022-07-30 07:50:00 【sunset stained ramp】
目标:How to understand the plucker coordinates
Recent review articles have linear expression.Because recently in writing project,Encountered this kind of problem,But this kind of problem,Few Chinese information,Therefore his record yourself understand.
定义: The traditional in any of several European coordinates,直线的向量表达: L : r → = P → + t l → L:\overrightarrow{r}=\overrightarrow{\bm{P}}+t\overrightarrow{\bm{l}} L:r=P+tl;其中 P → = ( p 0 p 1 p 2 ) \overrightarrow{\bm{P}}=\begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} P=⎝⎛p0p1p2⎠⎞, l → = ( l 0 l 1 l 2 ) \overrightarrow{\bm{l}}=\begin{pmatrix} l_0 \\ l_1 \\ l_2 \end{pmatrix} l=⎝⎛l0l1l2⎠⎞, 其中 P → \overrightarrow{\bm{P}} PVertex said line, l → \overrightarrow{\bm{l}} lIs the direction of the straight line.
定义: In the plucker coordinate system,Linear expression generally represented as ( l → , m → ) (\overrightarrow{\bm{l}},\overrightarrow{\bm{m}}) (l,m),其中 m → = p → × l → \overrightarrow{\bm{m}} =\overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} m=p×l,称为: m o m e n t v e c t o r moment \space vector moment vector, l → \overrightarrow{\bm{l}} lIs the direction of the straight line.
But a lot of people not particularly understand ( l → , m → ) (\overrightarrow{\bm{l}},\overrightarrow{\bm{m}}) (l,m)On the geometric meaning expression in a straight line.And it and a few in any coordinate system of the straight line have what relation?
答:
You first need to understand a very important vector l → \overrightarrow{\bm{l}} l,It is a direction of the straight line.It and in any of several European straight direction,Said straight direction.如下图,Is the direction of the straight line,Generally do not have the length information,可以normlize,But if it doesn'tnormlize,它提供一个scale的量,可以表示为 c = ∣ l → ∣ c=|\overrightarrow{\bm{l}}| c=∣l∣.而这个 c c cThere are provided m → \overrightarrow{\bm{m}} m (因为 m → \overrightarrow{\bm{m}} m也来源于 l → \overrightarrow{\bm{l}} l). Through the calculation of later found l → \overrightarrow{\bm{l}} l不提供scale变量,其实scaleVertex variable from line P → \overrightarrow{\bm{P}} P. P → \overrightarrow{\bm{P}} P和 m → \overrightarrow{\bm{m}} m Jointly decided the another important variable of linear,The apex of the straight line.Below is expressed as P → ⊥ \overrightarrow{\bm{P}}\bot P⊥,It is perpendicular to the vertex of the straight line.

Understand another very important vector again m → \overrightarrow{\bm{m}} m,It is besides said direction,It also has a length of information,And it and vertex in line p → \overrightarrow{\bm{p}} p无关.这是一个非常重要的性质.
证明: m → \overrightarrow{\bm{m}} m和 p → \overrightarrow{\bm{p}} p(Any vertex in line)无关,假设 m → = p → × l → \overrightarrow{\bm{m}} = \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} m=p×l ;The apex of the straight line on the other p ′ → \overrightarrow{\bm{p'}} p′For straight line of arbitrary vertex, p ′ → − p → = λ l → \overrightarrow{\bm{p'}}- \overrightarrow{\bm{p}}=\lambda \overrightarrow{\bm{l}} p′−p=λl.Prove vertex and line has nothing to do,因此得到如下:
p ′ → × l → = ( λ l → + p → ) × l → = λ l → × l → + p → × l → = p → × l → = m → \overrightarrow{\bm{p'}} \times \overrightarrow{\bm{l}} \\ = (\lambda \overrightarrow{\bm{l}}+\overrightarrow{\bm{p}}) \times \overrightarrow{\bm{l}} \\ = \lambda \overrightarrow{\bm{l}} \times \overrightarrow{\bm{l}}+\overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} \\ = \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} = \overrightarrow{\bm{m}} p′×l=(λl+p)×l=λl×l+p×l=p×l=m
So you can see on the drawing: m → \overrightarrow{\bm{m}} m是垂直于 p → \overrightarrow{\bm{p}} p和 l → \overrightarrow{\bm{l}} l所在的平面. m → \overrightarrow{\bm{m}} m的长度表示为 ∣ m → ∣ |\overrightarrow{\bm{m}}| ∣m∣.Vertical point is expressed as the origin to a straight line P → ⊥ \overrightarrow{\bm{P}}\bot P⊥.
如果向量 l → \overrightarrow{\bm{l}} lIs a unit vector.向量 P → ⊥ \overrightarrow{\bm{P}}\bot P⊥的长度就和 ∣ m → ∣ |\overrightarrow{\bm{m}}| ∣m∣长度一样,It is also a vertex positioning line,Equivalent to a linear one vertex(Therefore linear direction and vertex,The only decision in a straight line).为了证明这个结论,假设 l ′ → \overrightarrow{\bm{l}'} l′A unit vector for the line,因为 m → \overrightarrow{\bm{m}} m来源于 p → × l → \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} p×l,So it will change,可以表示为 m ′ → \overrightarrow{\bm{m}'} m′.因此:c l ′ → = l → \overrightarrow{\bm{l}'} =\overrightarrow{\bm{l}} l′=l;c m ′ → = m → \overrightarrow{\bm{m}'}=\overrightarrow{\bm{m}} m′=m
计算 P → ⊥ = l ′ → × m ′ → \overrightarrow{\bm{P}}\bot = \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m'}} P⊥=l′×m′
Expression vector as follows: P → ⊥ P → = t l ′ → \overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}} = t \overrightarrow{\bm{l}'} P⊥P=tl′, O → P → = P → \overrightarrow{\bm{O}}\overrightarrow{\bm{P}}=\overrightarrow{\bm{P}} OP=P(因为O是原点).
因为知道 c o s ( θ ) = ∣ P → ⊥ P → ∣ / ∣ O → P → ∣ = ( l ′ → ⋅ P → ) / ( ∣ l ′ → ∣ ⋅ ∣ P → ∣ ) cos(\theta) = |\overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}}| / |\overrightarrow{\bm{O}}\overrightarrow{\bm{P}}| = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}}) / (| \overrightarrow{\bm{l}'}| \cdot |\overrightarrow{\bm{P}}|) cos(θ)=∣P⊥P∣/∣OP∣=(l′⋅P)/(∣l′∣⋅∣P∣),This is the basic of triangle function formula.
∣ P → ⊥ P → ∣ = ∣ O → P → ∣ c o s ( θ ) = ( l ′ → ⋅ P → ) / ∣ l ′ → ∣ = l ′ → ⋅ P → ( 因为 l ′ → 是单位向量 ) |\overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}}| \\=|\overrightarrow{\bm{O}}\overrightarrow{\bm{P}}|cos(\theta) \\ = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}} )/ |\overrightarrow{\bm{l}'}| \\ = \overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}} (因为\overrightarrow{\bm{l}'}是单位向量) ∣P⊥P∣=∣OP∣cos(θ)=(l′⋅P)/∣l′∣=l′⋅P(因为l′是单位向量)
Calculate the formula above,Vertical point can be as follows:
P → ⊥ = P → − ( l ′ → ⋅ P → ) l ′ → = ( l ′ → ⋅ l ′ → ) P → − ( l ′ → ⋅ P → ) l ′ → = l ′ → × ( P → × l ′ → ) = l ′ → × m ′ → \overrightarrow{\bm{P}}\bot =\overrightarrow{\bm{P}}-(\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}})\overrightarrow{\bm{l}'} \\ = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{l}'})\overrightarrow{\bm{P}} - (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}})\overrightarrow{\bm{l}'} \\ = \overrightarrow{\bm{l}'} \times (\overrightarrow{\bm{P}} \times \overrightarrow{\bm{l}'}) \\ = \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} P⊥=P−(l′⋅P)l′=(l′⋅l′)P−(l′⋅P)l′=l′×(P×l′)=l′×m′
Can be seen from the formula,The apex of the straight line P → ⊥ \overrightarrow{\bm{P}}\bot P⊥The two formula l ′ → × m ′ → \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} l′×m′得到.It also determines the uniqueness of a straight line. P → ⊥ \overrightarrow{\bm{P}}\bot P⊥变化,Although the direction,But it's position will change,Also change the location of the said a straight line.Vertex so line,由 l ′ → × m ′ → \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} l′×m′决定.
如果 l → \overrightarrow{\bm{l}} l不是单位向量,It has its own length,因为 l → \overrightarrow{\bm{l}} lUnits can be said to l ′ → = l → / ∣ l → ∣ = l → / c \overrightarrow{\bm{l}'}=\overrightarrow{\bm{l}}/|\overrightarrow{\bm{l}}|=\overrightarrow{\bm{l}}/c l′=l/∣l∣=l/c,因此公式中:
P → ⊥ = l ′ → × m ′ → = ( l → / ∣ l → ∣ ) × m ′ → = ( l → × m ′ → ) / ∣ l → ∣ = ( l → × m ′ → ) / c = ( l → × ( m → / c ) ) / c = ( l → × m → ) / c 2 \overrightarrow{\bm{P}}\bot =\overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} = (\overrightarrow{\bm{l}}/|\overrightarrow{\bm{l}}|) \times \overrightarrow{\bm{m}'} \\ = (\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}'})/|\overrightarrow{\bm{l}}| =(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}'} )/c \\ = (\overrightarrow{\bm{l}} \times (\overrightarrow{\bm{m}}/c ))/c=(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}}) /c^2 P⊥=l′×m′=(l/∣l∣)×m′=(l×m′)/∣l∣=(l×m′)/c=(l×(m/c))/c=(l×m)/c2
从公式可以看出来:
原点到直线的距离,可以表示为 ∣ P → ⊥ ∣ = ∣ ( l → × m → ) ∣ / c 2 = ∣ ( l → × m → ) ∣ / ∣ l → ∣ 2 |\overrightarrow{\bm{P}}\bot|=|(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}})| / c^2=|(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}})|/|\overrightarrow{\bm{l}}|^2 ∣P⊥∣=∣(l×m)∣/c2=∣(l×m)∣/∣l∣2,可以得到,无论 l → \overrightarrow{\bm{l}} l是否normlize,只要 m → \overrightarrow{\bm{m}} m和 normlized之后的 l → \overrightarrow{\bm{l}} l保持一致,都可以.
同时可以看出来
( l → , m → ) = ( c l → , c m → ) (\overrightarrow{\bm{l}} ,\overrightarrow{\bm{m}} ) = (c\overrightarrow{\bm{l}} , c\overrightarrow{\bm{m}} ) (l,m)=(cl,cm)
Equal sign says that they are the same linear expression.
证明:直接代入 P → ⊥ \overrightarrow{\bm{P}}\bot P⊥公式就行了.
参考论文:Plücker Coordinates for Lines in the Space ∗
边栏推荐
- Headline 2: there are several kinds of common SQL errors in MySQL usage?
- 舒尔补(schur completement)
- numpy 多维数组ndarray的详解
- AI can identify race from X-rays, but no one knows why
- Network Protocol 01 - Basic Concepts
- 阿里二面:Redis有几种集群方案?我答了4种
- (GGG)JWT
- Test Development Engineer Growth Diary 015 - Top 20 Test Interview Questions
- idea built-in translation plugin
- npm安装nodejs环境配置
猜你喜欢
随机推荐
Process and Scheduled Task Management
黑盒测试的概念及测试方法
Test Development Engineer Growth Diary 003 - Interface Automation Framework Construction
Detailed explanation of numpy multidimensional array ndarray
测试开发工程师成长日记009 - 环境排排站:开发环境、测试环境、生产环境、UAT环境、仿真环境
iptables命令
大厂年薪50w+招聘具有测试平台开发能力的测试工程师
测试开发工程师成长日记001 - 敏捷测试、CI/CD/CT、DecOps的一些介绍
numpy 多维数组ndarray的详解
05-Theos
阿里二面:Sentinel vs Hystrix 对比,如何选择?
New material under the plastic restriction order - polylactic acid (PLA)
STL源码剖析:临时对象的代码测试和理解
软件测试_01
Polygon 3D(三维平面多边形)的法向量的计算(MeshLab默认的计算)
Mastering JESD204B (2) – Debugging of AD6676
MongoDB-CUD没有R
使用 Grafana 的 Redis Data Source 插件监控 Redis
Test Development Engineer Growth Diary 008 - Talking About Some Bugs/Use Case Management Platform/Collaboration Platform
舒尔补(schur completement)









