当前位置:网站首页>Follow teacher Li to learn online generation - matrix (continuously updated)
Follow teacher Li to learn online generation - matrix (continuously updated)
2022-07-29 10:09:00 【Super seed code】
List of articles
Basic concepts
- matrix : from m × n m\times n m×n A number of m m m That's ok n n n The table of columns is called a m × n m\times n m×n Matrix , When m = n m=n m=n when , be called n n n Order matrix , Write it down as A A A.
- Homomorphic matrices : If A A A and B B B All are m × n m\times n m×n Order matrix , So called A A A and B B B It's a homomorphic matrix .
- Equality matrix : set up A , B A,B A,B It's a homomorphic matrix , If a i j = b i j ( ∀ i = 1 , 2 , … , m ; j = 1 , 2 , … , n ) a_{ij}=b_{ij}(\forall i=1,2,\dots,m;j=1,2,\dots,n) aij=bij(∀i=1,2,…,m;j=1,2,…,n), said A A A and B B B equal , Write it down as A = B A=B A=B.
- Zero matrix : If all the elements of a matrix are 0 0 0, Then call this matrix zero matrix , Write it down as O O O.
- Diagonal matrix : [ a 11 a 22 ⋱ a n n ] \begin{bmatrix} a_{11}&&\\ &a_{22}&\\ &&\ddots&\\ &&&a_{nn} \end{bmatrix} ⎣⎡a11a22⋱ann⎦⎤
- Unit matrix : [ 1 1 ⋱ 1 ] \begin{bmatrix} 1&&\\ &1&\\ &&\ddots&\\ &&&1 \end{bmatrix} ⎣⎡11⋱1⎦⎤ Write it down as E E E.
- Upper triangular matrix : [ a 11 a 12 … a 1 n a 22 … a 2 n ⋱ ⋮ a n n ] \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ &a_{22}&\dots&a_{2n}\\ &&\ddots&\vdots\\ &&&a_{nn} \end{bmatrix} ⎣⎡a11a12a22……⋱a1na2n⋮ann⎦⎤ When i > j i>j i>j when , a i j = 0 a_{ij}=0 aij=0
- Lower triangular matrix : [ a 11 a 21 a 22 ⋮ ⋮ ⋱ a n 1 a n 2 … a n n ] \begin{bmatrix} a_{11}&&&\\ a_{21}&a_{22}&&\\ \vdots&\vdots&\ddots&\\ a_{n1}&a_{n2}&\dots&a_{nn} \end{bmatrix} ⎣⎡a11a21⋮an1a22⋮an2⋱…ann⎦⎤ When i < j i<j i<j when , a i j = 0 a_{ij}=0 aij=0
- Symmetric matrix : if A T = A A^T=A AT=A, said A A A Is symmetric matrix .
- Antisymmetric matrix : if A T = − A A^T=-A AT=−A, said A A A Antisymmetric matrix .
Matrix operation
- Addition of matrix : A = [ a i j ] , B = [ b i j ] A=[a_{ij}],B=[b_{ij}] A=[aij],B=[bij] Are all m × n m\times n m×n Order matrix , that A + B = [ a i j + b i j ] A+B=[a_{ij}+b_{ij}] A+B=[aij+bij].
- Addition algorithm : if A , B , C A,B,C A,B,C Same type , be A + B = B + A ( A + B ) + C = A + ( B + C ) A + O = A A + ( − A ) = O A+B=B+A\\(A+B)+C=A+(B+C)\\A+O=A\\A+(-A)=O A+B=B+A(A+B)+C=A+(B+C)A+O=AA+(−A)=O
- Number multiplied by matrix : k A = [ k a i j ] kA=[ka_{ij}] kA=[kaij].
- Number multiplication algorithm : k ( m A ) = m ( k A ) = ( m k ) A ( k + m ) A = k A + m A k ( A + B ) = k A + k B 1 A = A 0 A = O k(mA)=m(kA)=(mk)A\\(k+m)A=kA+mA\\k(A+B)=kA+kB\\1A=A\\0A=O k(mA)=m(kA)=(mk)A(k+m)A=kA+mAk(A+B)=kA+kB1A=A0A=O
- Multiplication of matrices : if A = [ a i j ] m × s , B = [ b i j ] s × n A=[a_{ij}]_{m\times s},B=[b_{ij}]_{s\times n} A=[aij]m×s,B=[bij]s×n, be A × B = C = [ c i j ] m × n A\times B=C=[c_{ij}]_{m\times n} A×B=C=[cij]m×n among c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 n a i k b k j c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{is}b_{sj}=\sum_{k=1}^na_{ik}b_{kj} cij=ai1b1j+ai2b2j+⋯+aisbsj=k=1∑naikbkj
- Multiplication algorithm : A ( B C ) = ( A B ) C A ( B + C ) = A B + A C ( k A ) ( l B ) = k l A B A E = A , E A = A O A = O , A O = O A(BC)=(AB)C\\A(B+C)=AB+AC\\(kA)(lB)=klAB\\AE=A,EA=A\\OA=O,AO=O A(BC)=(AB)CA(B+C)=AB+AC(kA)(lB)=klABAE=A,EA=AOA=O,AO=O Be careful : A B ≠ B A , if A , B It's a diagonal matrix , be A B = B A A B = O ⇏ A = O or B = O A B = A C , A ≠ 0 ⇏ B = C [ a 1 a 2 a 3 ] n = A = [ a 1 n a 2 n a 3 n ] AB\neq BA, if A,B It's a diagonal matrix , be AB=BA\\AB=O\nRightarrow A=O or B=O\\AB=AC,A\neq0\nRightarrow B=C\\\begin{bmatrix}a_1&&\\&a_2&\\&&a_3\end{bmatrix}^n=A=\begin{bmatrix}a_1^n&&\\&a_2^n&\\&&a_3^n\end{bmatrix} AB=BA, if A,B It's a diagonal matrix , be AB=BAAB=O⇏A=O or B=OAB=AC,A=0⇏B=C⎣⎡a1a2a3⎦⎤n=A=⎣⎡a1na2na3n⎦⎤
- Transposition : set up A = [ a i j ] m × n A=[a_{ij}]_{m\times n} A=[aij]m×n, take A A A The rows and columns are interchanged , Got n × m n\times m n×m Matrix [ a j i ] n × m [a_{ji}]_{n\times m} [aji]n×m be called A A A The transpose matrix of , Write it down as A T A^T AT.
- Transpose algorithm : ( A + B ) T = A T + B T ( k A ) T = k A T ( A B ) T = B T A T ( A T ) T = A (A+B)^T=A^T+B^T\\(kA)^T=kA^T\\(AB)^T=B^TA^T\\(A^T)^T=A (A+B)T=AT+BT(kA)T=kAT(AB)T=BTAT(AT)T=A
Matrices and determinants
- The determinant of a square : set up A = [ a i j ] A=[a_{ij}] A=[aij] by n n n Order matrix , The determinant formed by keeping all its elements in place is called a matrix A A A The determinant of , Write it down as ∣ A ∣ |A| ∣A∣ Be careful : Only square matrix has determinant ; A = O A=O A=O and ∣ A ∣ = 0 |A|=0 ∣A∣=0 It doesn't matter. .
- The formula of the determinant of the square matrix : ∣ A T ∣ = ∣ A ∣ ∣ k A ∣ = k n ∣ A ∣ ∣ A B ∣ = ∣ A ∣ ∣ B ∣ ∣ A 2 ∣ = ∣ A ∣ 2 |A^T|=|A|\\|kA|=k^n|A|\\|AB|=|A||B|\\|A^2|=|A|^2 ∣AT∣=∣A∣∣kA∣=kn∣A∣∣AB∣=∣A∣∣B∣∣A2∣=∣A∣2
Adjoint matrix
- Adjoint matrix : set up A = [ a i j ] A=[a_{ij}] A=[aij] yes n n n Order matrix , determinant ∣ A ∣ |A| ∣A∣ Each element of a i j a_{ij} aij The algebraic covalent of A i j A_{ij} Aij The following matrix A ∗ = [ A 11 A 21 … A n 1 A 12 A 22 … A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n … A n n ] A^*=\begin{bmatrix}A_{11}&A_{21}&\dots&A_{n1}\\A_{12}&A_{22}&\dots&A_{n2}\\\vdots&\vdots&&\vdots\\A_{1n}&A_{2n}&\dots&A_{nn}\end{bmatrix} A∗=⎣⎡A11A12⋮A1nA21A22⋮A2n………An1An2⋮Ann⎦⎤ It's called a matrix A A A The adjoint matrix of .
- A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E
- Adjoint matrix of second order matrix : The main diagonals are interchangeable , The sub diagonal changes sign .
Invertible matrix
- Invertible matrix : about n n n Order matrix A A A, If ∃ n \exists n ∃n Order matrix B B B, send A B = B A = E AB=BA=E AB=BA=E It's called matrix A A A It's reversible , matrix B B B yes A A A The inverse matrix .
- If matrix A A A It's reversible , that A A A The inverse matrix of is unique , Write it down as A − 1 A^{-1} A−1.
- If A A A reversible , be A − 1 A^{-1} A−1 It's also reversible , And ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A−1)−1=A.
- If A A A reversible , And k ≠ 0 k\neq0 k=0, be k A kA kA reversible , And ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)−1=k1A−1.
- If A , B A,B A,B reversible , be A B AB AB It's reversible , And ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1.
- If A A A reversible , be A T A^T AT It's reversible , And ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)−1=(A−1)T.
- A A A reversible ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow|A|\neq0 ⇔∣A∣=0.
- A , B A,B A,B yes n n n Order matrix , If A B = E AB=E AB=E, be A − 1 = B A^{-1}=B A−1=B.
- If A A A reversible , be A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A−1=∣A∣1A∗.
- If A A A reversible , be ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} ∣A−1∣=∣A∣1.
- If A = [ a 1 a 2 a 3 ] A=\begin{bmatrix}a_1&&\\&a_2&\\&&a_3\end{bmatrix} A=⎣⎡a1a2a3⎦⎤ It's a diagonal matrix , be A − 1 = [ 1 a 1 1 a 2 1 a 3 ] A^{-1}=\begin{bmatrix}\frac{1}{a_1}&&\\&\frac{1}{a_2}&\\&&\frac{1}{a_3}\end{bmatrix} A−1=⎣⎡a11a21a31⎦⎤.
Block matrix
Block the matrix properly , It can be calculated effectively , After blocking, there are the following algorithms :
- [ A 1 A 2 A 3 A 4 ] + [ B 1 B 2 B 3 B 4 ] = [ A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ] \begin{bmatrix}A_1&A_2\\A_3&A_4\end{bmatrix}+\begin{bmatrix}B_1&B_2\\B_3&B_4\end{bmatrix}=\begin{bmatrix}A_1+B_1&A_2+B_2\\A_3+B_3&A_4+B_4\end{bmatrix} [A1A3A2A4]+[B1B3B2B4]=[A1+B1A3+B3A2+B2A4+B4]
- [ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] \begin{bmatrix}A&B\\C&D\end{bmatrix}\begin{bmatrix}X&Y\\Z&W\end{bmatrix}=\begin{bmatrix}AX+BZ&AY+BW\\CX+DZ&CY+DW\end{bmatrix} [ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]
- [ A B C D ] T = [ A T C T B T D T ] \begin{bmatrix}A&B\\C&D\end{bmatrix}^T=\begin{bmatrix}A^T&C^T\\B^T&D^T\end{bmatrix} [ACBD]T=[ATBTCTDT]
set up A , B A,B A,B Respectively m , n m,n m,n Order matrix , be :
- [ A O O B ] n = [ A n O O B n ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^n=\begin{bmatrix}A^n&O\\O&B^n\end{bmatrix} [AOOB]n=[AnOOBn]
set up A , B A,B A,B Respectively m , n m,n m,n Second order invertible matrices , be :
- [ A O O B ] − 1 = [ A − 1 O O B − 1 ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^{-1}=\begin{bmatrix}A^{-1}&O\\O&B^{-1}\end{bmatrix} [AOOB]−1=[A−1OOB−1]
- [ O A B O ] − 1 = [ O C − 1 B − 1 O ] \begin{bmatrix}O&A\\B&O\end{bmatrix}^{-1}=\begin{bmatrix}O&C^{-1}\\B^{-1}&O\end{bmatrix} [OBAO]−1=[OB−1C−1O]
if A A A yes m × n m\times n m×n matrix , B B B yes n × s n\times s n×s Matrix and A B = C AB=C AB=C, On the other hand B , C B,C B,C There are : [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ] [ b 1 b 2 ⋮ b n ] = [ c 1 c 2 ⋮ c n ] \begin{bmatrix}a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{m1}&a_{m2}&\dots&a_{mn}\end{bmatrix}\begin{bmatrix}b_1\\b_2\\\vdots\\b_n\end{bmatrix}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix} ⎣⎡a11a21⋮am1a12a22⋮am2………a1na2n⋮amn⎦⎤⎣⎡b1b2⋮bn⎦⎤=⎣⎡c1c2⋮cn⎦⎤ namely { a 11 b 1 + a 12 b 2 + ⋯ + a 1 n b n = c 1 a 21 b 1 + a 22 b 2 + ⋯ + a 2 n b n = c 2 … a n 1 b 1 + a n 2 b 2 + ⋯ + a n n b n = c n \begin{cases}a_{11}b_1+a_{12}b_2+\dots+a_{1n}b_n=c_1\\a_{21}b_1+a_{22}b_2+\dots+a_{2n}b_n=c_2\\\dots\\a_{n1}b_1+a_{n2}b_2+\dots+a_{nn}b_n=c_n\\\end{cases} ⎩⎨⎧a11b1+a12b2+⋯+a1nbn=c1a21b1+a22b2+⋯+a2nbn=c2…an1b1+an2b2+⋯+annbn=cn
Elementary transformation of matrix
The elementary transformation of a matrix is the sum of elementary row transformation and elementary column transformation :
- Multiply a row of the matrix with a non-zero constant ( Column ).
- Put a line ( Column ) Of k k k Multiply to another line ( Column ).
- Exchange two rows in the matrix ( Column ) The location of .
Elementary row transformation and linear equations
Now solve the following linear equations :
{ 2 x 1 − x 2 + 3 x 3 = 1 4 x 1 + 2 x 2 + 5 x 3 = 4 2 x 1 + 2 x 3 = 6 \begin{cases}2x_1-x_2+3x_3=1\\4x_1+2x_2+5x_3=4\\2x_1+2x_3=6\end{cases} ⎩⎨⎧2x1−x2+3x3=14x1+2x2+5x3=42x1+2x3=6
according to Addition and subtraction Law :
- Multiply both sides of the equation by a non-zero number .
- Put the... Of an equation k k k Add times to another equation .
- Exchange the positions of two equations .
Simplify the equations to :
{ 2 x 1 − x 2 + 3 x 3 = 1 x 2 − x 3 = 5 x 3 = − 6 \begin{cases}2x_1-x_2+3x_3=1\\x_2-x_3=5\\x_3=-6\end{cases} ⎩⎨⎧2x1−x2+3x3=1x2−x3=5x3=−6
The solution of the equation can be obtained , The essence of addition, subtraction and elimination is the change of unknown coefficient and constant term , Therefore, the unknown coefficient and constant term can be written into a matrix :
[ 2 − 1 3 1 4 2 5 4 2 0 2 6 ] \begin{bmatrix}2&-1&3&1\\4&2&5&4\\2&0&2&6\end{bmatrix} ⎣⎡242−120352146⎦⎤
This matrix is called the matrix of linear equations Augmented matrix . The line performs elementary row transformation on the matrix to simplify the matrix ( Positive elimination ) to :
[ 2 − 1 3 1 0 1 − 1 5 0 0 1 − 6 ] \begin{bmatrix}2&-1&3&1\\0&1&-1&5\\0&0&1&-6\end{bmatrix} ⎣⎡200−1103−1115−6⎦⎤
Then reverse the solution , The solution of the linear equation can be obtained .
Elementary matrix
The matrix obtained from the identity matrix through an elementary row transformation is called Elementary matrix .
- Elementary matrix P P P Left multiplication A A A What you get P A PA PA That's right A A A Do it once with P P P The same elementary line transformation .
- Elementary matrix P P P Take the right A A A What you get A P AP AP That's right A A A Do it once with P P P The same elementary column transformation .
- [ 1 0 0 0 1 0 0 k 1 ] − 1 = [ 1 0 0 0 1 0 0 − k 1 ] \begin{bmatrix}1&0&0\\0&1&0\\0&k&1\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&1&0\\0&-k&1\end{bmatrix} ⎣⎡10001k001⎦⎤−1=⎣⎡10001−k001⎦⎤
- [ 1 0 0 0 0 1 0 1 0 ] − 1 = [ 1 0 0 0 0 1 0 1 0 ] \begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix} ⎣⎡100001010⎦⎤−1=⎣⎡100001010⎦⎤
- [ 1 0 0 0 k 0 0 0 1 ] − 1 = [ 1 0 0 0 1 k 0 0 0 1 ] \begin{bmatrix}1&0&0\\0&k&0\\0&0&1\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&\frac{1}{k}&0\\0&0&1\end{bmatrix} ⎣⎡1000k0001⎦⎤−1=⎣⎡1000k10001⎦⎤
Equivalence matrix
If matrix A A A After a finite number of elementary changes, it is transformed into a matrix B B B, It's called a matrix A A A And B B B Equivalent , Write it down as A ≅ B A\cong B A≅B. Matrix equivalence satisfies :
- Reflexivity : A ≅ A A\cong A A≅A
- symmetry : if A ≅ B A\cong B A≅B, be B ≅ A B\cong A B≅A
- Transitivity : if A ≅ B , B ≅ C A\cong B,B\cong C A≅B,B≅C, be A ≅ C A\cong C A≅C
Row ladder matrix
set up A A A It's a m × n m\times n m×n Matrix , If meet :
- If the matrix has zero rows , Then the zero row is at the bottom of the matrix .
- The principal element of every non-zero row matrix ( That is, the first non-zero yuan on the leftmost side of a line ) The elements below the column are 0 0 0.
said A A A For row ladder matrix .
Row simplest matrix
set up A A A It's a m × n m\times n m×n Matrix , If meet :
- A A A It's a row ladder matrix
- The principal elements of non-zero elements are 1 1 1, And other elements in the column where the primary element is located are 0 0 0.
said A A A Is the row simplest matrix .
Application of elementary transformation in matrix solution
- Solve the inverse matrix of the matrix by elementary row transformation : A A A The necessary and sufficient condition for the invertibility of a matrix is A A A It can be expressed as the product of several elementary matrices . namely P n … P 2 P 1 = A P_n\dots P_2P_1=A Pn…P2P1=A that ( P n … P 2 P 1 ) − 1 A = E (Pn\dots P_2P_1)^{-1}A=E (Pn…P2P1)−1A=E because ( P n … P 2 P 1 ) − 1 = P n − 1 … P 2 − 1 P 1 − 1 = Q n … Q 2 Q 1 (Pn\dots P_2P_1)^{-1}=P_n^{-1}\dots P_2^{-1}P_1^{-1}=Q_n\dots Q_2Q_1 (Pn…P2P1)−1=Pn−1…P2−1P1−1=Qn…Q2Q1( Q Q Q Still elementary matrix ), So the original formula can be written as : Q n … Q 2 Q 1 A = E Q_n\dots Q_2Q_1A=E Qn…Q2Q1A=E that Q n … Q 2 Q 1 E = A − 1 Q_n\dots Q_2Q_1E=A^{-1} Qn…Q2Q1E=A−1 therefore ( A ∣ E ) → ⋯ → ( E ∣ A − 1 ) (A|E)\rightarrow\dots\rightarrow(E|A^{-1}) (A∣E)→⋯→(E∣A−1)
- Solve the matrix equation by elementary row transformation : if A x = B Ax=B Ax=B, If A A A reversible , that x = A − 1 B x=A^{-1}B x=A−1B also P A = E PA=E PA=E that P B = A − 1 B = x PB=A^{-1}B=x PB=A−1B=x therefore P ( A ∣ B ) = ( E ∣ x ) P(A|B)=(E|x) P(A∣B)=(E∣x)
The rank of a matrix
k k k Order subformula : stay m × n m\times n m×n Matrix of order A A A in , Take whatever you like k k k Line with k k k Column ( k ≤ n , k ≤ m k≤n,k≤m k≤n,k≤m), Located at the intersection of these rows and columns k 2 k^2 k2 Elements in the original matrix A A A The order of can form a k k k Step determinant , Call it a matrix A A A One of the k k k Order subformula .
The rank of a matrix : If the matrix A A A in r r r The order formula is not 0 0 0, r + 1 r+1 r+1 Order subformula ( If there is ) It's all zero , It's called matrix A A A The rank of is r r r, Write it down as r ( A ) = r r(A)=r r(A)=r, The rank of the zero matrix is specified as 0 0 0.
if A A A yes n n n Order matrix , that r ( A ) = n ⇔ ∣ A ∣ ≠ 0 ⇔ A reversible r ( A ) < n ⇔ ∣ A ∣ = 0 ⇔ A Irreversible r(A)=n\Leftrightarrow|A|\neq0\Leftrightarrow A reversible \\r(A)<n\Leftrightarrow|A|=0\Leftrightarrow A Irreversible r(A)=n⇔∣A∣=0⇔A reversible r(A)<n⇔∣A∣=0⇔A Irreversible
After elementary transformation, the rank of the matrix is invariant .
If matrix P , Q P,Q P,Q reversible , Yes P A Q = B PAQ=B PAQ=B, that r ( P A Q ) = r ( B ) r(PAQ)=r(B) r(PAQ)=r(B).
0 ≤ r ( A m × n ) ≤ m i n ( m , n ) 0≤r(A_{m\times n})≤min(m,n) 0≤r(Am×n)≤min(m,n)
r ( A T ) = r ( A ) r(A^T)=r(A) r(AT)=r(A)
r ( A + B ) ≤ r ( A ) + r ( B ) r(A+B)≤r(A)+r(B) r(A+B)≤r(A)+r(B)
r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k\neq0) r(kA)=r(A)(k=0)
r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB)≤min(r(A),r(B)) r(AB)≤min(r(A),r(B)). prove : set up r ( A ) = r r(A)=r r(A)=r, Then there is any invertible matrix P , Q P,Q P,Q bring P A Q = [ E r O O O ] m × n PAQ=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}_{m\times n} PAQ=[ErOOO]m×n be P A B = [ E r O O O ] Q − 1 B = [ E r O O O ] [ B r × s B ( n − r ) × s ] = [ B r × s O ] PAB=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}Q^{-1}B=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}\begin{bmatrix}B_{r\times s}\\B_{(n-r)\times s}\end{bmatrix}=\begin{bmatrix}B_{r\times s}\\O\end{bmatrix} PAB=[ErOOO]Q−1B=[ErOOO][Br×sB(n−r)×s]=[Br×sO] namely r ( A B ) = r ( P A B ) = r ( [ B r × s O ] ) = r ( B r × s ) ≤ r ≤ r ( A ) r(AB)=r(PAB)=r(\begin{bmatrix}B_{r\times s}\\O\end{bmatrix})=r(B_{r\times s})≤r≤r(A) r(AB)=r(PAB)=r([Br×sO])=r(Br×s)≤r≤r(A) It can be obtained. r ( A B ) = r ( ( A B ) T ) = r ( B T A T ) ≤ r ( B T ) = r ( B ) r(AB)=r((AB)^T)=r(B^TA^T)≤r(B^T)=r(B) r(AB)=r((AB)T)=r(BTAT)≤r(BT)=r(B) so r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB)≤min(r(A),r(B)) r(AB)≤min(r(A),r(B))
r ( [ A O O B ] ) = r ( A ) + r ( B ) r(\begin{bmatrix}A&O\\O&B\end{bmatrix})=r(A)+r(B) r([AOOB])=r(A)+r(B)
m a x ( r ( A ) , r ( B ) ) ≤ r ( A ∣ B ) ≤ r ( A ) + r ( B ) max(r(A),r(B))≤r(A|B)≤r(A)+r(B) max(r(A),r(B))≤r(A∣B)≤r(A)+r(B). prove : set up r ( A ) = r , r ( B ) = t r(A)=r,r(B)=t r(A)=r,r(B)=t, P A T = A 1 ( Step by step , r A nonzero line ) Q B T = B 1 ( Step by step , t A nonzero line ) PA^T=A_1( Step by step ,r A nonzero line )\\QB^T=B_1( Step by step ,t A nonzero line ) PAT=A1( Step by step ,r A nonzero line )QBT=B1( Step by step ,t A nonzero line ) that [ P O O Q ] [ A T B T ] = [ A 1 B 1 ] \begin{bmatrix}P&O\\O&Q\end{bmatrix}\begin{bmatrix}A^T\\B^T\end{bmatrix}=\begin{bmatrix}A_1\\B_1\end{bmatrix} [POOQ][ATBT]=[A1B1] be r ( A ∣ B ) = r [ A T B T ] = [ A 1 B 1 ] ≤ r + t ≤ r ( A ) + r ( B ) r(A|B)=r{\begin{bmatrix}A^T\\B^T\end{bmatrix}}=\begin{bmatrix}A_1\\B_1\end{bmatrix}≤r+t≤r(A)+r(B) r(A∣B)=r[ATBT]=[A1B1]≤r+t≤r(A)+r(B)
n n n A system of elementary linear equations A x = B Ax=B Ax=B Determination of solution : Its augmented matrix is C C C Then the solution is as follows :
| situation | explain |
|---|---|
| unsolvable | r ( A ) + 1 = r ( C ) r(A)+1=r(C) r(A)+1=r(C) |
| Unique solution | r ( A ) = r ( C ) = n r(A)=r(C)=n r(A)=r(C)=n |
| Infinite solutions | r ( A ) = r ( C ) < n ) r(A)=r(C)<n) r(A)=r(C)<n) |
- n n n Element homogeneous equations A x = 0 Ax=0 Ax=0 There is a nonzero solution ⇔ r ( A ) < n \Leftrightarrow r(A)<n ⇔r(A)<n
- matrix equation A x = B Ax=B Ax=B Have solution ⇔ r ( A ) = r ( A , B ) \Leftrightarrow r(A)=r(A,B) ⇔r(A)=r(A,B)
边栏推荐
- English grammar_ Indefinite pronouns - Common Phrases
- Docker安装Redis、配置及远程连接
- 二次握手??三次挥手??
- shell编程之sed,正则表达式
- MySQL million level data migration practice notes
- 造型科幻、标配6安全气囊,风行·游艇11.99万起售
- Yin Yi: my learning and growth path
- 【AAAI】用于交通流预测的基于注意力的时空图卷积网络
- The function of that sentence
- [wechat applet] interface generates customized homepage QR code
猜你喜欢

leetcode刷题——排序

Orbslam2 installation test and summary of various problems

Shell笔记(超级完整)

Youboxun, the gold donor of the open atom open source foundation, joined hands with partners to help openharmony break the circle!

全面、详细的SQL学习指南(MySQL方向)
![[Yugong series] go teaching course 009 in July 2022 - floating point type of data type](/img/85/3c776af519debbb2df802ea774c965.png)
[Yugong series] go teaching course 009 in July 2022 - floating point type of data type

Print out the "hourglass" and the remaining number according to the given number of characters and characters

根据给定字符数和字符,打印输出“沙漏”和剩余数

Shell notes (super complete)

这是一份不完整的数据竞赛年鉴!
随机推荐
MySQL优化理论学习指南
The maximum length of VARCHAR2 type in Oracle is_ Oracle modify field length SQL
MySQL logging system: binlog, redo log and undo log
After the thunderstorm of two encryption companies: Celsius repayment guarantee collateral, three arrow capital closed and disappeared
The function of that sentence
Dynamics 365Online 如何自定义商机关闭窗体
Functions and arrays
Implementation and verification logic of complex expression input component
mosquitto_sub -F 参数使用
Intel joins hands with datawhale to launch learning projects!
待人宽容大度
[Yugong series] go teaching course 010 in July 2022 - Boolean and character types of data types
尹伊:我的学习成长路径
Does neural network sound tall? Take you to train a network from scratch (based on MNIST)
MySQL infrastructure: SQL query statement execution process
造型科幻、标配6安全气囊,风行·游艇11.99万起售
Meituan senior technical expert: DDD's practice in the evolution of tourism e-commerce architecture
leetcode刷题——排序
[FPGA tutorial case 18] develop low delay open root calculation through ROM
[C language] Sanzi chess (intelligent chess playing + blocking players)