当前位置:网站首页>[image enhancement] image enhancement based on sparse representation and regularization with matlab code

[image enhancement] image enhancement based on sparse representation and regularization with matlab code

2022-06-09 10:34:00 Matlab scientific research studio

1 brief introduction

2 Part of the code

function [features] = extract(window,grid,X,filters)feature_size = prod(window)*numel(filters);% Current image features extraction [feature x index]if isempty(filters)    f=X(grid);    features = reshape(f,[size(f,1) * size(f,2) size(f,3)]);else    features = zeros([feature_size size(grid,3)],'single');    for i = 1:numel(filters)        f_l=conv2(X,filters{i},'same');        f=X-f_l;        f=f(grid);        f=reshape(f,[size(f,1)*size(f,2) size(f,3)]);        features((1:size(f,1))+(i-1)*size(f,1),:)=f;    endend

3 Simulation results

4 reference

[1] Zhu Bo , Li Hua , Gao Wei , etc. . Image super-resolution algorithm based on regularized sparse representation [J]. Optoelectronics . laser , 2013(10):2024-2030.​

About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .

Some theories cite network literature , If there is infringement, contact the blogger to delete .

原网站

版权声明
本文为[Matlab scientific research studio]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/160/202206090950326411.html