当前位置:网站首页>[Fault Diagnosis] Weak Fault Diagnosis of Fan Bearing Based on PSO_VMD_MCKD Method
[Fault Diagnosis] Weak Fault Diagnosis of Fan Bearing Based on PSO_VMD_MCKD Method
2022-08-02 16:32:00 【Zhi Zhao】
一、基本理论
1. PSO算法
有关PSORead the blog post for an introduction:PSO-LSSVM算法及其MATLAB代码
2. VMD算法
有关VMDRead the blog post for an introduction:VMD算法
3. MCKD算法
3.1 算法简介
Maximum correlation kurtosis deconvolution(Maximum Correlated Kurtosis Deconvolution,简称MCKD)Consecutive pulses overwhelmed by noise are highlighted by a deconvolution operation,Increase the correlation kurtosis value of the original signal,It is suitable for extracting continuous transient impulses of weak fault signals.
3.2 算法原理
MCKDThe essence of the algorithm is to find oneFIRfilter to recover continuous impulse signals overwhelmed by noise,In order to verify whether the signal recovered by the filter satisfies the periodic impact characteristic,Need to use the relevant kurtosis index to measure.The correlation kurtosis is defined as :
C K M ( T ) = ∑ n = 1 N ( ∏ m = 0 M y n − m T ) 2 ( ∑ i = 1 N y n 2 ) M + 1 CK _{M}(T)= \frac{ \sum_{n=1}^{N} ( \prod ^M_{m=0} y_{n}-mT)^2 } { (\sum_{i=1}^{N} y_{n}^{2} )^{M+1} } CKM(T)=(∑i=1Nyn2)M+1∑n=1N(∏m=0Myn−mT)2
其中, T T Tis the period of the shock signal; M M M为移位数; m ∈ [ 0 , M ] m∈[0,M] m∈[0,M]; L 为 滤 波 器 的 长 度 L为滤波器的长度 L为滤波器的长度; y n y_{n} ynfor the shock signal.
对信号进行滤波,when the correlation kurtosis C K M ( T ) CK_{M}(T) CKM(T)最大时,The solved filter is to meet the requirements.假设输入信号为 x x x,输出信号为 y y y,FIRThe principle of filtering the signal by the filter is as follows:
y = f ∗ x y = f * x y=f∗x
Solve for the filter coefficients in the above equation f f f ,It is the process of deconvolution operation.
二、PSO_VMD_MCKD
为实现 VMD 和 MCKD parameter adaptive selection,The parameters in the two algorithms are optimized by particle swarm optimization algorithm,Determine the fitness function as the envelope spectrum crest factor.
方法流程:
1)设定VMDmodal number K 和惩罚因子 alpha optimization range,利用PSO对VMDThe algorithm performs parameter optimization;
2)得到VMDthe optimal number of modes Best_K and the optimal penalty factor Best_alpha ,再利用VMD对原始信号进行分解,Calculates the envelope spectral crest factor for each component Ec,选择 Ec The component with the largest index is the optimal component;
3)设定MCKDThe filter length parameter of L 和 Deconvolution periodToptimization range,利用PSO对VMDThe algorithm performs parameter optimization;
4)得到MCKDThe optimal filter length parameter for Best_L 和 Optimal deconvolution periodBest_T,Then proceed to the optimal componentMCKD分析,Finally, the envelope demodulation is performed on the deconvoluted signal.
三、MATLAB代码
Simulating_faultSignal.m:产生仿真信号
clc;
clear;
close all;
%% 仿真信号
A0 = 0.5; % 位移常数
fr = 25; % 转频
C = 800; % 衰减系数
fn = 4e3; % 共振频率
T = 1/120; % 重复周期
fs = 12800; % 采样频率
N = 8192; % 采样点数
SNR = -16; % 信噪比
NT = round(fs*T); % 单周期采样点数
t0 = (0:NT-1)/fs; % Single cycle sampling time
t = (0:N-1)/fs; % 采样时间
k = ceil(N/NT)-1; % 重复次数
x = [];
% 产生kthe same waveform
for i = 1:k
t1 = ((i-1)*NT)/fs:1/fs:(i*NT-1)/fs; % k个周期
Ak = A0*sin(2*pi*fr*t1)+1;
h = exp(-C*t0).*sin(2*pi*fn*t0);
x = [x,Ak .* h];
end
tt0 = 0:1/fs:((N/NT-k)*NT)/fs; % kThe remaining sampling time after cycles
tt1 = k*NT/fs:1/fs:(N-1)/fs;
x = [x,((A0*sin(2*pi*fr*tt1)+1).*exp(-C*tt0).*sin(2*pi*fn*tt0))];
x(1:NT) = 0; % The signal amplitude in the first single cycle is 0
nt = wgn(1,N,-16); % 高斯白噪声
y = x + nt;
PSO_VMD.m:PSO优化VMD(非完整代码)
%% PSO优化VMD
load y; % yis a noisy signal
P_number = 30; % 粒子群个数
C1 = 2; % Initialize the learning factor
C2 = 2;
W_max = 0.90; % 初始权重
W_min = 0.4; % Termination weight
iter = 20; % 迭代次数
% 定义优化参数的取值范围:K取[3,10],Alpha取[100,2000]
Kmax = 10; % 定义优化参数的取值范围
Kmin = 3;
Alphamax = 2000;
Alphamin = 100;
% 定义适应度函数
function f = Adaptness1(K,alpha,y)
K=round(K);
alpha=round(alpha);
% VMD分解
% x:is the time domain signal to be decomposed
% u:A collection of decomposition patterns
% u_hat:mode spectrum
% omega:Estimate the mode center frequency
% K:The number of modes that are decomposed
% alpha:惩罚因子,Also called the balance parameter
tau = 0; % 噪声容忍度
DC = 0; % 无直流分量
init = 1; % Initialize the center frequency as a uniform distribution
tol = 1e-7; % Convergence criterion tolerance
[u, ~, omega] = VMD(y, alpha, tau, K, DC, init, tol);
Best_VMD.m(非完整代码):利用VMDDecomposition of noisy signals,get the optimal amount
%% 利用PSO优化VMDthe optimal parameters obtained,再进行VMD分解
load y; % yis a noisy signal
load bestK;
load bestAlpha;
% VMD分解
% x:is the time domain signal to be decomposed
% u:A collection of decomposition patterns
% u_hat:mode spectrum
% omega:Estimate the mode center frequency
% K:The number of modes that are decomposed
% alpha:惩罚因子,Also called the balance parameter
tau = 0; % 噪声容忍度
DC = 0; % 无直流分量
init = 1; % Initialize the center frequency as a uniform distribution
tol = 1e-7; % Convergence criterion tolerance
[u, ~, omega] = VMD(y, bestAlpha, tau, bestK, DC, init, tol);
PSO_MCKD.m:PSO优化MCKD(非完整代码)
%% PSO优化MCKD
load X1; % Read the optimal component
y = X1;
P_number = 30; % 粒子群个数
C1 = 2; % Initialize the learning factor
C2 = 2;
W_max = 0.90; % 初始权重
W_min = 0.4; % Termination weight
iter = 20; % 迭代次数
% 定义优化参数的取值范围:L取[100,1000],T取[90,150]
Lmax = 1000; % 定义优化参数的取值范围
Lmin = 100;
Tmax = 142;
Tmin = 85;
% 定义适应度函数
function Ad = Adaptness2(filterSize,T,y)
filterSize = round(filterSize);
T = round(T);
termIter = 30;
M = 3;
plotMode = 0;
[y_final, ~, ~] = MCKD(y,filterSize,termIter,T,M,plotMode);
Best_MKCD.m(非完整代码):利用MCKDDeconvolving the optimal components to obtain the final signal y_final
%% 利用PSO优化MCKDthe optimal parameters obtained,再进行MCKD分析
load X1; % Read the optimal component
load bestL;
load bestT;
% MCKD:Maximum correlation kurtosis deconvolution
termIter = 30;
M = 3;
plotMode = 0;
[y_final, f_final, ckIter] = MCKD(X1,bestL,termIter,bestT,M,plotMode);
Find functions of the spectrum and envelope spectrum of a signal
% 求信号的频谱
[f1,A] = PinPu(y,fs);
% Find the envelope spectrum of the signal
[f2,EnvA1] = Envelope(y,fs);
完整的MATLAB代码地址如下:
参考文献
张俊, Zhang Jianqun, 钟敏, 等. 基于PSO_VMD_MCKDMethod for weak fault diagnosis of fan bearings[J]. 振动、测试与诊断, 2020,40(2):287-290.
边栏推荐
猜你喜欢
随机推荐
关于导出聊天记录这件事……
Oauth2.0 Supplement
华为单臂路由配置,实现不同vlan之间的通信
基于Visual Studio 2015的CUDA编程(一):基本配置
【软件测试】selenium自动化测试2
2021年度总结——收获圆满的一年
DOM —— 事件绑定与解绑
三大特殊类(String Object 包装类)与异常
grub 命令使用
【数据读写】csv文件与xls/xlsx文件
怎么使用 smart_rtmpd 的纯 webrtc 功能?
网络运维系列:远程服务器登录、配置与管理
Golang学习(三十五) go 连接redis
数据库性能优化的误区!
WeTest----如何查看Wetest生成测试报告?
VMware 安装openwrt
ks.cfg 怎么读取光盘 (cdrom) 上的文件并执行对应的脚本
一线大厂研发流程(转载自鱼皮)
Scala的基础语法(小试牛刀)
VLAN原理