当前位置:网站首页>跳跃游戏II[贪心练习]

跳跃游戏II[贪心练习]

2022-06-24 06:32:00 REN_林森

前言

对于求最小最大问题,一般可与贪心联系起来,比如求最少步数,可以找每步能走的最远距离,以此达到最小步数。

一、跳跃游戏II

在这里插入图片描述

二、贪心思想练习

1、大顶堆优先队列

// 跳跃游戏II
public class Jump {
    
    /* target:最少多少步能走到最后一个位置。 找每走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。 */
    public int jump(int[] nums) {
    
        if (nums.length == 1) return 0;
        // 大顶堆。
        PriorityQueue<int[]> que = new PriorityQueue<>((o1, o2) -> o2[0] + o2[1] - o1[0] - o1[1]);
        que.offer(new int[]{
    0, nums[0]});
        int cnt = 1;
        while (!que.isEmpty()) {
    
            int[] arr = que.poll();
            if (arr[0] + arr[1] >= nums.length - 1) return cnt;
            for (int i = arr[0] + 1; i <= arr[0] + arr[1] && i < nums.length; i++) {
    
                que.offer(new int[]{
    i, nums[i]});
            }
            ++cnt;
        }
        return cnt;
    }
}

2、改进–记录最大值即可

// 记录跳的最远的位置即可,不需要用优先队列每次offer都logn
class Jump2 {
    
    /* target:最少多少步能走到最后一个位置。 找没走一步能走到的最远距离,当走n步最远距离大于nums.length时,则为最小步数。最远距离使步数最小。 */
    public int jump(int[] nums) {
    
        if (nums.length == 1) return 0;
        // max(下标 + 跳跃步数)
        int[] maxDis = new int[]{
    0, nums[0]};
        int cur = 1;
        int cnt = 1;
        while (true) {
    
            if (maxDis[0] + maxDis[1] >= nums.length - 1) return cnt;
            int end = maxDis[0] + maxDis[1];
            while (cur <= end) {
    
                if (cur + nums[cur] > maxDis[0] + maxDis[1]) {
    
                    maxDis[0] = cur;
                    maxDis[1] = nums[cur];
                }
                ++cur;
            }
            ++cnt;
        }
    }
}

总结

1)贪心,想找最小,就必须大步往前走,想100米成绩好,就要跑的更快。

参考文献

[1] LeetCode 跳跃游戏II

原网站

版权声明
本文为[REN_林森]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_43164662/article/details/125436473