当前位置:网站首页>PAT (Advanced Level) Practice 1057 Stack
PAT (Advanced Level) Practice 1057 Stack
2022-07-01 06:25:00 【Keep--Silent】
题目
Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With NNN elements, the median value is defined to be the (N/2)(N/2)(N/2)-th smallest element if NNN is even, or ((N+1)/2)((N+1)/2)((N+1)/2)-th if NNN is odd.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer NNN (≤105\le 10^5≤105). Then NNN lines follow, each contains a command in one of the following 3 formats:
Push key Pop PeekMedian
where key is a positive integer no more than 10510^5105.
Output Specification:
For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print Invalid instead.
Sample Input:
17 Pop PeekMedian Push 3 PeekMedian Push 2 PeekMedian Push 1 PeekMedian Pop Pop Push 5 Push 4 PeekMedian Pop Pop Pop Pop
Sample Output:
Invalid Invalid 3 2 2 1 2 4 4 5 3 Invalid
大意说明
三种操作:
- 插入x
- 删除x
- 查询中位数
解题思路
数据大小 1 0 5 10^5 105,所以放弃,所以需要一些特定的结构,需要单次插入删除查询三种操作的复杂度必须小于 n n n,才能使得总体复杂度不超过 n 2 n^2 n2,所以选择树状数组。
插入与删除
const int Size = 1e5 + 10;
int vt[Size], n = Size - 5;;
int lb(int x) {
return x & (-x); }
void update(int x,int size) {
for (int i = x; i <= n; i+=lb(i)) {
vt[i]+=size;
}
}
- 插入x: update(x,1);
- 删除x: update(x,-1);
所以:
- 插入x
- 删除x
- 查询中位数
查询中位数
树状数组表示的是前缀和,我们用vt存储数量 ,二分查找即可: 即我们要查找的是中位数,即查找第一个大于等于一半数量的位置。
int getsum(int index) {
int cnt = 0;
for (int i = index; i; i -= lb(i))cnt += vt[i];
return cnt;
}
void Medeian() {
int cnt = getsum(n);
int pot = (cnt+1) / 2;
if (cnt== 0) {
printf("Invalid\n");
return;
}
int l = 1, r = n;
while (l < r) {
int mid = l + r >> 1;
if (getsum(mid) >= pot)r = mid;
else l = mid + 1;
}
printf("%d\n",l);
}
至此
- 插入x
- 删除x
- 查询中位数
复杂度分析
二分复杂度 log n \log n logn,getsum复杂度 log n \log n logn,总共 n n n次操作 ,即总体复杂度 n log 2 n n \log^2 n nlog2n
完整代码
#include <bits/stdc++.h>
using namespace std;
const int Size = 1e5 + 10;
int vt[Size], n = Size - 5;;
int lb(int x) {
return x & (-x); }
void update(int x,int size) {
for (int i = x; i <= n; i+=lb(i)) {
vt[i]+=size;
}
}
int getsum(int index) {
int cnt = 0;
for (int i = index; i; i -= lb(i))cnt += vt[i];
return cnt;
}
void Medeian() {
int cnt = getsum(n);
int pot = (cnt+1) / 2;
if (cnt== 0) {
printf("Invalid\n");
return;
}
int l = 1, r = n;
while (l < r) {
int mid = l + r >> 1;
if (getsum(mid) >= pot)r = mid;
else l = mid + 1;
}
printf("%d\n",l);
}
int main() {
stack<int>sk;
int n,x;
cin >> n;
char ss[300];
while (n--) {
scanf("%s", &ss);
if (ss[1] == 'o') {
if (sk.size() == 0) {
printf("Invalid\n");
continue;
}
x = sk.top();
update(x, -1);
sk.pop();
printf("%d\n", x);
}
else if (ss[1] == 'u') {
scanf("%d", &x);
sk.push(x);
update(x, 1);
}
else {
Medeian();
}
}
return 0;
}
边栏推荐
- What is a port scanning tool? What is the use of port scanning tools
- SystemVerilog learning-07-class inheritance and package use
- Uniapp tree level selector
- 异常检测方法梳理,看这篇就够了!
- 码力十足学量化|如何在财务报告寻找合适的财务公告
- [enterprise data security] upgrade backup strategy to ensure enterprise data security
- 伪装请求头库: anti-useragent
- 【自动化运维】自动化运维平台有什么用
- [ManageEngine] how to realize network automatic operation and maintenance
- TCL statements in SQL (transaction control statements)
猜你喜欢
随机推荐
[ManageEngine Zhuohao] helps Julia college, the world's top Conservatory of music, improve terminal security
[enterprise data security] upgrade backup strategy to ensure enterprise data security
json模块
【Unity Shader 描边效果_案例分享第一篇】
虚幻 简单的屏幕雨滴后处理效果
Tidb single machine simulation deployment production environment cluster (closed pit practice, personal test is effective)
图片服务器项目测试
Forkjoin and stream flow test
[leetcode] day91- duplicate elements exist
子类调用父类的同名方法和属性
mysql约束学习笔记
做技术,自信不可或缺
存储函数学习笔记
手把手教你实现一个深度学习框架...
阿里OSS Postman Invalid according to Policy: Policy Condition failed: [“starts-with“, “$key“, “test/“]
async 与 await
ManageEngine Zhuohao helps you comply with ISO 20000 standard (IV)
C语言课设职工信息管理系统(大作业)
DML statement in SQL (data operation language)
TCL statements in SQL (transaction control statements)








