当前位置:网站首页>[image denoising] image denoising based on bicube interpolation and sparse representation matlab source code
[image denoising] image denoising based on bicube interpolation and sparse representation matlab source code
2022-07-25 16:13:00 【Matlab scientific research studio】
1 Content introduction
This paper solves the problem of generating super-resolution from a single low resolution input image (SR) The problem with images . We solve this problem from the perspective of compressed sensing . The low resolution image is regarded as the down sampled version of the high resolution image , Suppose that the patch has a sparse representation relative to the over complete dictionary of the prototype signal atom . The principle of compressed sensing ensures that under mild conditions , Sparse representation can be correctly recovered from the down sampled signal . We will prove the effectiveness of sparsity as a priori for the specification of otherwise ill posed super-resolution problems . We further show that , A small group of original patches randomly selected from training images with similar statistical properties to the input image can usually be used as a good dictionary , Because the calculated representation is sparse , The restored high-resolution image is competitive and even better than others SR Method generated image .
2 Simulation code
% =========================================================================% Simple demo codes for image super-resolution via sparse representation%% Reference% =========================================================================clear all; clc;% read test imageim_l = imread('Data/Testing/input.bmp');% set parameterslambda = 0.2; % sparsity regularizationoverlap = 4; % the more overlap the better (patch size 5x5)up_scale = 2; % scaling factor, depending on the trained dictionarymaxIter = 20; % if 0, do not use backprojection% load dictionaryload('Dictionary/D_1024_0.15_5.mat');% change color space, work on illuminance onlyim_l_ycbcr = rgb2ycbcr(im_l);im_l_y = im_l_ycbcr(:, :, 1);im_l_cb = im_l_ycbcr(:, :, 2);im_l_cr = im_l_ycbcr(:, :, 3);% image super-resolution based on sparse representation[im_h_y] = ScSR(im_l_y, 2, Dh, Dl, lambda, overlap);[im_h_y] = backprojection(im_h_y, im_l_y, maxIter);% upscale the chrominance simply by "bicubic"[nrow, ncol] = size(im_h_y);im_h_cb = imresize(im_l_cb, [nrow, ncol], 'bicubic');im_h_cr = imresize(im_l_cr, [nrow, ncol], 'bicubic');im_h_ycbcr = zeros([nrow, ncol, 3]);im_h_ycbcr(:, :, 1) = im_h_y;im_h_ycbcr(:, :, 2) = im_h_cb;im_h_ycbcr(:, :, 3) = im_h_cr;im_h = ycbcr2rgb(uint8(im_h_ycbcr));% bicubic interpolation for referenceim_b = imresize(im_l, [nrow, ncol], 'bicubic');% read ground truth imageim = imread('Data/Testing/gnd.bmp');% compute PSNR for the illuminance channelbb_rmse = compute_rmse(im, im_b);sp_rmse = compute_rmse(im, im_h);bb_psnr = 20*log10(255/bb_rmse);sp_psnr = 20*log10(255/sp_rmse);% show the imagesfigure,subplot(131),imshow(im_l);title(' Original picture ')subplot(132),imshow(im_h);title(['PSNR for Sparse representation ',num2str( sp_psnr)]);subplot(133), imshow(im_b);title(['PSNR for Bicubic interpolation ',num2str(bb_psnr)]);
3 Running results

4 reference
[1] Kingship , Publicize , Li Yanfeng , etc. . An image denoising algorithm based on sparse representation [J]. Industrial instruments and automation devices , 2013.
[2] Liu Meijuan . be based on MATLAB Research on image denoising based on [C]// Challenges and opportunities :2010 Colleges and universities GIS Forum . 0.
[3] Guo Xiaofeng , Zhao Zheng Chen , Liushengqing , etc. . An image denoising method and system based on image sparse representation :, CN109727219A[P]. 2019.
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- Zhaoqi Kechuang high-quality overseas returnee talent entrepreneurship and innovation service platform, online live broadcast Roadshow
- 墨天轮高分技术文档分享——数据库安全篇(共48个)
- Data system partition design - partition and secondary index
- General test case writing specification
- MySQL global lock
- MySQL乐观锁
- 权限管理-删除菜单(递归)
- 基于Caffe ResNet-50网络实现图片分类(仅推理)的实验复现
- MQTT X CLI 正式发布:强大易用的 MQTT 5.0 命令行工具
- 意向锁(Intention Lock)
猜你喜欢

使用 Terraform 在 AWS 上快速部署 MQTT 集群

EMQX Cloud 更新:日志分析增加更多参数,监控运维更省心

General test case writing specification

Ice 100g network card fragment message hash problem

【IJCAI 2022】参数高效的大模型稀疏训练方法,大幅减少稀疏训练所需资源

I interviewed 8 companies and got 5 offers in a week. Share my experience

进程之间的通信(管道详解)

基于Caffe ResNet-50网络实现图片分类(仅推理)的实验复现

"Digital security" alert NFT's seven Scams

Wavelet transform --dwt2 and wavedec2
随机推荐
狂神redis笔记12
意向锁(Intention Lock)
TypeError: Unrecognized value type: <class ‘str‘> ParserError: Unknown string format
JWT diagram
MySQL 元数据锁(MDL)
MySQL教程68-AS 设置别名
MySQL check whether the table is locked
leetcode:6127. 优质数对的数目【位运算找规律 + 两数之和大于等于k + 二分】
MySQL教程65-MySQL操作表中数据
【ZeloEngine】反射系统填坑小结
[zeloengine] summary of pit filling of reflection system
权限管理-删除菜单(递归)
使用 Terraform 在 AWS 上快速部署 MQTT 集群
【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码
Analysis and solution of data and clock mismatch delay in SPI transmission
面试8家公司,1周拿了5个offer,分享一下自己的心得
推荐系统-协同过滤在Spark中的实现
Zhaoqi Kechuang high-quality overseas returnee talent entrepreneurship and innovation service platform, online live broadcast Roadshow
MySQL self incrementing lock
Endnote cannot edit range resolution