当前位置:网站首页>Re19: Read the paper Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Re19: Read the paper Paragraph-level Rationale Extraction through Regularization: A case study on European Court
2022-07-30 10:14:00 【The gods are silent】
论文名称:Paragraph-level Rationale Extraction through Regularization: A case study on European Court of Human Rights Cases
论文ArXiv下载地址:https://arxiv.org/abs/2103.13084
论文NAACL官方下载地址:https://aclanthology.org/2021.naacl-main.22/(The official video.This blog china-africa illustrations are intercepted from the papers from the video)
本文提出的ECtHR数据集的huggingface下载地址:ecthr_cases · Datasets at Hugging Face
本文是2021年NAACL论文.
任务:alleged violation predictionPredict the fact description text corresponding to violate the law of(highly skewed multi-label text classification task)+可解释性(rationale extraction)
rationale extraction:Extract the case is used to predict the results provide explanation in the text of the paragraph(paragraph-level)
为了提高alleged violation prediction任务中的可解释性(interpretability或explainablity),From the perspective of the user center to the decision result provides reasonable explanation.本文通过rationale extraction来实现这一目标,Before the mainstream methods were focused onword-level rationales,And this article is frommulti-paragraph structured court casesExtract the paragraph.除此之外,This article also puts forward a markrationales的数据集ECtHR.This article USES the existingrationale constraints( sparsity, continuity, and comprehensiveness),And put forward the newsingularity,作为regularizers.
1. Background
- rationalization by construction方法论:直接用constraint来正则化模型,The decision-making models based on the correctrationalesTo the condition of thereward,Instead of after the event can be interpreted according to the results of the model of decision-making reasoning
the model is regularized to satisfy additional constraints that reward the model, if its decisions are based on concise rationales it selects, as opposed to inferring explanations from the model’s decisions in a post-hoc manner - Can be interpreted the meaning of:right to explanation
- 执法过程:

2. 模型
2.1 Novelty
- previous work on word-level rationales for binary classification→paragraph-level rationales
- The end-to-end fine-tuning for the first trainingTransformer模型中应用rationale extraction的工作
- Does not need manual annotationrationales
2.2 模型
constraint:以前就有的sparsity, continuity(Experimental results show invalid), and comprehensiveness(需要根据multi-labelParadigm for correction),In this paper, the proposedsingularity(能提升效果,And robust)
baseline HIERBERT-HA:text encoder→rationale extraction→prediction

In the video into the figure is:
Word level of regular
①Coding respectively each paragraph:context-unaware paragraph representations
②用2层transformer编码contextualized paragraph embeddings
③全连接层(激活函数selu)
K→用于分类
Q→用于rationale extraction→Each paragraph a full connection layer+sigmoid,得到soft attention
scores→binarize,得到hard attention scores
④得到hardmasked document representation(hard mask+max pooling)(不可微,So there is a trainingtrick)
⑤全连接层+sigmoid
baseline HIERBERT-ALL:不mask事实
constraint:
①Sparsity:Limit the number of selected fact
②Continuity:In this paper model is useless,But the experiment
③Comprehensiveness:Left in the paragraph generated much better results than to throw away,Compare the two paragraphs or cosine similarity
④Singularity:选出的maskIt is better than random
Rationales supervision:noisy rationale supervision


3. 实验
3.1 数据集
提出ECtHR数据集,English case text,silver/gold rationales,Events have time to order,Decisions including breach of law and citing precedent
3.2 实验设置
超参数:
网格搜索,Adam,学习率2e-5
贪心调参
LEGAL-BERT-SMALL:
50 paragraphs of 256 words
3.3 实验结果
指标:
micro-F1
Faithfulness: sufficiency and comprehensiveness
Rationale quality: Objective / subjective (mean R-Precision (mRP) [email protected])




4. 代码复现
等我服务器好了再说.
边栏推荐
- 606. Create a string from a binary tree (video explanation!!!)
- 2022年顶会accepted papers list
- C语言顺序表基本操作
- leetcode 剑指 Offer 52. 两个链表的第一个公共节点
- leetcode 剑指 Offer 42. 连续子数组的最大和
- 线程池方式开启线程--submit()和execute()的区别
- 4、yolov5-6.0 ERROR: AttributeError: ‘Upsample‘ object has no attribute ‘recompute_scale_factor‘ 解决方案
- C#中Config文件中,密码的 特殊符号的书写方法。
- Study Notes 10--Main Methods of Local Trajectory Generation
- 大根堆的创建(视频讲解)
猜你喜欢

leetcode 剑指 Offer 42. 连续子数组的最大和

mysql安装教程【安装版】

Re17:读论文 Challenges for Information Extraction from Dialogue in Criminal Law

Redis Desktop Manager 2022.4.2 发布

快解析结合象过河erp

Test automation selenium (a)

PyQt5-用像素点绘制正弦曲线

Devops和低代码的故事:螳螂捕蝉,黄雀在后

By building a sequence table - teach you to calculate time complexity and space complexity (including recursion)

pnpm简介
随机推荐
leetcode 剑指 Offer 10- II. 青蛙跳台阶问题
Unified exception handling causes ResponseBodyAdvice to fail
Redis Desktop Manager 2022.4.2 released
容器技术 -- 简单了解 Kubernetes 的对象
功能测试、UI自动化测试(web自动化测试)、接口自动化测试
知识图谱之Cypher语言的使用
debian10 install djando
shell脚本
连接mysql报错WARN: Establishing SSL connection without server‘s identity verification is not recommended
初识Apifox——如何使用Apifox做一个简单的接口测试
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Flask之路由(app.route)详解
CSDN21天学习挑战赛
水电表预付费系统
Multithreading--the usage of threads and thread pools
企业数字化建设,自研还是采购?
Practical Walkthrough | Calculate Daily Average Date or Time Interval in MySQL
再有人问你分布式事务,把这篇扔给他
实战演练 | 在 MySQL 中计算每日平均日期或时间间隔
4、yolov5-6.0 ERROR: AttributeError: ‘Upsample‘ object has no attribute ‘recompute_scale_factor‘ 解决方案