当前位置:网站首页>MCS:多元随机变量——离散随机变量
MCS:多元随机变量——离散随机变量
2022-06-29 14:39:00 【今晚打佬虎】
Multivariate Discrete Arbitrary
有 k k k个离散的随机变量: ( x 1 , . . . , x k ) (x_1, ...,x_k) (x1,...,xk),联合概率分布为: P ( x 1 , . . . , x k ) P(x_1, ...,x_k) P(x1,...,xk), k k k个变量所有可能值的概率和为:1。
∑ x 1 ∼ x k P ( x 1 . . . x k ) = 1.0 \sum_{x_1 \sim x_k} P(x_1...x_k) = 1.0 x1∼xk∑P(x1...xk)=1.0
边际概率, k k k个变量中的一个,记为: x j x_j xj
P ( x j . . . ) = ∑ a l l x b u t x j P ( x 1 , x 2 , . . . , x k ) P(x_j...) = \sum_{all_x but_{x_j}} P(x_1, x_2, ...,x_k) P(xj...)=allxbutxj∑P(x1,x2,...,xk)
边际期望:
E ( x j . . . ) = ∑ x j x j P ( x j . . . ) E(x_j...) = \sum_{x_j} x_j P(x_j...) E(xj...)=xj∑xjP(xj...)
边际方差:
V ( x j . . . ) = E ( x j 2 . . . ) − E ( x j . . . ) 2 V(x_j...) = E(x_j^2...) - E(x_j...)^2 V(xj...)=E(xj2...)−E(xj...)2
E ( x j 2 . . . ) = ∑ x j x j 2 P ( x j . . . ) E(x_j^2...) = \sum_{x_j} x_j^2 P(x_j...) E(xj2...)=xj∑xj2P(xj...)
生成随机变量
生成 k k k个离散变量的随机变量: ( x 1 , x 2 , . . . , x k ) (x_1, x_2, ...,x_k) (x1,x2,...,xk)
- 得到 x 1 x_1 x1的边际概率和累积分布: P ( x 1 . . . ) 、 F ( x 1 . . . ) P(x_1...)、F(x_1...) P(x1...)、F(x1...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 1 . . . ) F(x_1...) F(x1...)对应 x 1 x_1 x1的最小值,记为: x 10 x_{10} x10
- 得到 x 2 x_2 x2边际条件概率和累积分布: P ( x 2 ∣ x 10 . . . ) 、 F ( x 2 ∣ x 10 . . . ) P(x_2|x_{10}...)、F(x_2|x_{10}...) P(x2∣x10...)、F(x2∣x10...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 2 ∣ x 10 . . . ) F(x_2|x_{10}...) F(x2∣x10...)对应 x 2 x_2 x2的最小值,记为: x 20 x_{20} x20
- 得到 x 3 x_3 x3边际条件概率和累积分布: P ( x 3 ∣ x 10 x 20 . . . ) 、 F ( x 3 ∣ x 10 x 20 . . . ) P(x_3|x_{10}x_{20}...)、F(x_3|x_{10}x_{20}...) P(x3∣x10x20...)、F(x3∣x10x20...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 3 ∣ x 10 x 2 0 . . . ) F(x_3|x_{10}{x_20}...) F(x3∣x10x20...)对应 x 3 x_3 x3的最小值,记为: x 30 x_{30} x30
- 重复直到得到: x k 0 x_{k0} xk0
- ( x 1 0 , . . . x k 0 ) (x_10, ... x_{k0}) (x10,...xk0)
例:假设一个多元离散随机变量: ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3), x 1 x_1 x1可能的取值为: { 0 , 1 , 2 } \{0,1,2\} { 0,1,2}, x 2 x_2 x2可能的取值为: { 0 , 1 } \{0, 1\} { 0,1}, x 3 x_3 x3可能的取值为: { 1 , 2 , 3 } \{1,2,3\} { 1,2,3},概率分布如下:
P ( x 1 , x 2 , x 3 ) P(x_1, x_2, x_3) P(x1,x2,x3)
| x 3 x_3 x3 | 1 | 2 | 3 | 1 | 2 | 3 |
|---|---|---|---|---|---|---|
| x 2 x_2 x2 | 0 | 1 | ||||
| x 1 x_1 x1 | ||||||
| 0 | 0.12 | 0.10 | 0.08 | 0.08 | 0.06 | 0.05 |
| 1 | 0.08 | 0.06 | 0.04 | 0.05 | 0.04 | 0.03 |
| 2 | 0.06 | 0.04 | 0.02 | 0.04 | 0.03 | 0.02 |
根据概率分布生成多元离散随机变量:
- x 1 x_1 x1的边际概率和累积分布:
- P ( x 1 = 0... ) = 0.12 + 0.10 + 0.08 + 0.08 + 0.06 + 0.05 = 0.49 、 F ( 0... ) = 0.49 P(x_1 = 0...) = 0.12 + 0.10 + 0.08 + 0.08 + 0.06 + 0.05 = 0.49、F(0...) = 0.49 P(x1=0...)=0.12+0.10+0.08+0.08+0.06+0.05=0.49、F(0...)=0.49
- P ( x 1 = 1... ) = 0.08 + 0.06 + 0.04 + 0.05 + 0.04 + 0.03 = 0.30 、 F ( 1... ) = 0.79 P(x_1 = 1...) = 0.08 + 0.06 + 0.04 + 0.05 + 0.04 + 0.03 = 0.30、F(1...) = 0.79 P(x1=1...)=0.08+0.06+0.04+0.05+0.04+0.03=0.30、F(1...)=0.79
- P ( x 1 = 2... ) = 0.06 + 0.04 + 0.02 + 0.04 + 0.03 + 0.02 = 0.21 、 F ( 2... ) = 1.00 P(x_1 = 2...) = 0.06 + 0.04 + 0.02 + 0.04 + 0.03 + 0.02 = 0.21、F(2...) = 1.00 P(x1=2...)=0.06+0.04+0.02+0.04+0.03+0.02=0.21、F(2...)=1.00
- u ∼ U ( 0 , 1 ) , u = 0.37 , u < F ( 0 ) u \sim U(0, 1),u = 0.37,u < F(0) u∼U(0,1),u=0.37,u<F(0)令: x 10 = 0 x_{10} = 0 x10=0
- x 2 x_2 x2的(条件)边际概率和累积分布:
- P ( x 2 = 0 ∣ x 10 = 0... ) = ( 0.12 + 0.10 + 0.08 ) / 0.49 = 0.612 、 F ( 0 ∣ 0... ) = 0.612 P(x_2 = 0|x_{10} = 0...) = (0.12 + 0.10 + 0.08)/0.49 = 0.612、F(0|0...) = 0.612 P(x2=0∣x10=0...)=(0.12+0.10+0.08)/0.49=0.612、F(0∣0...)=0.612
- P ( x 2 = 1 ∣ x 10 = 0... ) = ( 0.08 + 0.06 + 0.05 ) / 0.49 = 0.388 、 F ( 1 ∣ 0... ) = 1.000 P(x_2 = 1|x_{10} = 0...) = (0.08 + 0.06 + 0.05)/0.49 = 0.388、F(1|0...) = 1.000 P(x2=1∣x10=0...)=(0.08+0.06+0.05)/0.49=0.388、F(1∣0...)=1.000
- u ∼ U ( 0 , 1 ) , u = 0.65 , u < F ( 1 ∣ 0... ) u \sim U(0, 1),u = 0.65,u < F(1|0...) u∼U(0,1),u=0.65,u<F(1∣0...)令: x 20 = 1 x_{20} = 1 x20=1
- x 3 x_3 x3的(条件)边际概率和累积分布:
- P ( x 3 = 1 ∣ x 10 x 20 . . . ) = 0.08 / 0.19 = 0.421 、 F ( 1 ∣ 0 , 1... ) = 0.421 P(x_3 = 1|x_{10}x_{20}...) = 0.08/0.19 = 0.421、F(1|0,1...) = 0.421 P(x3=1∣x10x20...)=0.08/0.19=0.421、F(1∣0,1...)=0.421
- P ( x 3 = 2 ∣ x 10 x 20 . . . ) = 0.06 / 0.19 = 0.316 、 F ( 2 ∣ 0 , 1... ) = 0.737 P(x_3 = 2|x_{10}x_{20}...) = 0.06/0.19 = 0.316、F(2|0,1...) = 0.737 P(x3=2∣x10x20...)=0.06/0.19=0.316、F(2∣0,1...)=0.737
- P ( x 3 = 3 ∣ x 10 x 20 . . . ) = 0.05 / 0.19 = 0.263 、 F ( 3 ∣ 0 , 1... ) = 1.000 P(x_3 = 3|x_{10}x_{20}...) = 0.05/0.19 = 0.263、F(3|0,1...) = 1.000 P(x3=3∣x10x20...)=0.05/0.19=0.263、F(3∣0,1...)=1.000
- u ∼ U ( 0 , 1 ) , u = 0.55 , u < F ( 1 ∣ 0 , 1... ) u \sim U(0, 1),u = 0.55,u < F(1|0,1...) u∼U(0,1),u=0.55,u<F(1∣0,1...)令: x 30 = 2 x_{30} = 2 x30=2
- ( x 10 , x 20 , x 30 ) = ( 0 , 1 , 2 ) (x_{10},x_{20},x_{30}) = (0, 1, 2) (x10,x20,x30)=(0,1,2)
模拟生成多元随机变量
import numpy as np
import matplotlib.pyplot as plt
def multivariateDiscrete(num=10):
x1, x2, x3 = [], [], []
for i in range(10000):
u = np.random.uniform(0, 1)
temp = []
for k, v in {
0:0.49,1:0.79,2:1.0}.items():
if v > u:
temp.append(k)
x1.append(np.min(temp))
u = np.random.uniform(0, 1)
temp = []
for k, v in {
0: 0.612, 1:1.0}.items():
if v > u:
temp.append(k)
x2.append(np.min(temp))
u = np.random.uniform(0, 1)
temp = []
for k, v in {
1:0.412, 2:0.737, 3:1.00}.items():
if v > u:
temp.append(k)
x3.append(np.min(temp))
return x1, x2, x3

边栏推荐
- 期货开户可以线下开户吗?在网上开户安全吗?
- 墨滴排版
- 信息学奥赛一本通2062:电影票
- Alibaba cloud experience Award: use polardb-x and Flink to build a large real-time data screen
- [top] blog instructions, bulletin board, message board, about bloggers
- openGauss社区成立SIG KnowledgeGraph
- 异步神器CompletableFuture
- 三角函数对应在平面坐标上画圆
- Chinese garbled code output from idea output station
- 威高血液净化冲刺香港:年营收29亿 净利降12.7%
猜你喜欢
随机推荐
广州期货正规吗?如果有人喊你用自己的手机登,帮忙开户,安全吗?
两个字的名字如何变成有空格的3个字符的名字
Heavyweight! The latest SCI impact factors were released in 2022, and the ranking of the three famous journals NCS and the top10 of domestic journals has changed (the latest impact factors in 2022 are
信息学奥赛一本通1194:移动路线
《canvas》之第13章 事件操作
Laravel - composer installs the specified laravel version
Configuration tutorial for swagger2
synchronized 与多线程的哪些关系
China soft ice cream market forecast and investment prospect research report (2022 Edition)
精品商城拼团秒杀优惠折扣全功能完美双端自适应对接个人免签网站源码
《canvas》之第9章 渐变与阴影
熊市慢慢,Bit.Store提供稳定Staking产品助你穿越牛熊
MCS:离散随机变量——Hyper Geometric分布
Ogg synchronize MySQL data to greenplus
symfony框架安全组件(security)防火墙配置
[QT tutorial] QPushButton key and double click effect
【关联分析实战篇】为什么 BI 软件都搞不定关联分析
论文学习——考虑场次降雨年际变化特征的年径流总量控制率准确核算
Is 100W data table faster than 1000W data table query in MySQL?
Analysis of constant current source circuit composed of two NPN tubes








![[top] blog instructions, bulletin board, message board, about bloggers](/img/3a/6100ae88874cad57305decce41c1e7.png)