当前位置:网站首页>MCS:多元随机变量——离散随机变量
MCS:多元随机变量——离散随机变量
2022-06-29 14:39:00 【今晚打佬虎】
Multivariate Discrete Arbitrary
有 k k k个离散的随机变量: ( x 1 , . . . , x k ) (x_1, ...,x_k) (x1,...,xk),联合概率分布为: P ( x 1 , . . . , x k ) P(x_1, ...,x_k) P(x1,...,xk), k k k个变量所有可能值的概率和为:1。
∑ x 1 ∼ x k P ( x 1 . . . x k ) = 1.0 \sum_{x_1 \sim x_k} P(x_1...x_k) = 1.0 x1∼xk∑P(x1...xk)=1.0
边际概率, k k k个变量中的一个,记为: x j x_j xj
P ( x j . . . ) = ∑ a l l x b u t x j P ( x 1 , x 2 , . . . , x k ) P(x_j...) = \sum_{all_x but_{x_j}} P(x_1, x_2, ...,x_k) P(xj...)=allxbutxj∑P(x1,x2,...,xk)
边际期望:
E ( x j . . . ) = ∑ x j x j P ( x j . . . ) E(x_j...) = \sum_{x_j} x_j P(x_j...) E(xj...)=xj∑xjP(xj...)
边际方差:
V ( x j . . . ) = E ( x j 2 . . . ) − E ( x j . . . ) 2 V(x_j...) = E(x_j^2...) - E(x_j...)^2 V(xj...)=E(xj2...)−E(xj...)2
E ( x j 2 . . . ) = ∑ x j x j 2 P ( x j . . . ) E(x_j^2...) = \sum_{x_j} x_j^2 P(x_j...) E(xj2...)=xj∑xj2P(xj...)
生成随机变量
生成 k k k个离散变量的随机变量: ( x 1 , x 2 , . . . , x k ) (x_1, x_2, ...,x_k) (x1,x2,...,xk)
- 得到 x 1 x_1 x1的边际概率和累积分布: P ( x 1 . . . ) 、 F ( x 1 . . . ) P(x_1...)、F(x_1...) P(x1...)、F(x1...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 1 . . . ) F(x_1...) F(x1...)对应 x 1 x_1 x1的最小值,记为: x 10 x_{10} x10
- 得到 x 2 x_2 x2边际条件概率和累积分布: P ( x 2 ∣ x 10 . . . ) 、 F ( x 2 ∣ x 10 . . . ) P(x_2|x_{10}...)、F(x_2|x_{10}...) P(x2∣x10...)、F(x2∣x10...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 2 ∣ x 10 . . . ) F(x_2|x_{10}...) F(x2∣x10...)对应 x 2 x_2 x2的最小值,记为: x 20 x_{20} x20
- 得到 x 3 x_3 x3边际条件概率和累积分布: P ( x 3 ∣ x 10 x 20 . . . ) 、 F ( x 3 ∣ x 10 x 20 . . . ) P(x_3|x_{10}x_{20}...)、F(x_3|x_{10}x_{20}...) P(x3∣x10x20...)、F(x3∣x10x20...)
- 生成一个随机连续均匀变量: u ∼ U ( 0 , 1 ) u \sim U(0, 1) u∼U(0,1)
- 找到大于随机变量 u u u的 F ( x 3 ∣ x 10 x 2 0 . . . ) F(x_3|x_{10}{x_20}...) F(x3∣x10x20...)对应 x 3 x_3 x3的最小值,记为: x 30 x_{30} x30
- 重复直到得到: x k 0 x_{k0} xk0
- ( x 1 0 , . . . x k 0 ) (x_10, ... x_{k0}) (x10,...xk0)
例:假设一个多元离散随机变量: ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3), x 1 x_1 x1可能的取值为: { 0 , 1 , 2 } \{0,1,2\} { 0,1,2}, x 2 x_2 x2可能的取值为: { 0 , 1 } \{0, 1\} { 0,1}, x 3 x_3 x3可能的取值为: { 1 , 2 , 3 } \{1,2,3\} { 1,2,3},概率分布如下:
P ( x 1 , x 2 , x 3 ) P(x_1, x_2, x_3) P(x1,x2,x3)
| x 3 x_3 x3 | 1 | 2 | 3 | 1 | 2 | 3 |
|---|---|---|---|---|---|---|
| x 2 x_2 x2 | 0 | 1 | ||||
| x 1 x_1 x1 | ||||||
| 0 | 0.12 | 0.10 | 0.08 | 0.08 | 0.06 | 0.05 |
| 1 | 0.08 | 0.06 | 0.04 | 0.05 | 0.04 | 0.03 |
| 2 | 0.06 | 0.04 | 0.02 | 0.04 | 0.03 | 0.02 |
根据概率分布生成多元离散随机变量:
- x 1 x_1 x1的边际概率和累积分布:
- P ( x 1 = 0... ) = 0.12 + 0.10 + 0.08 + 0.08 + 0.06 + 0.05 = 0.49 、 F ( 0... ) = 0.49 P(x_1 = 0...) = 0.12 + 0.10 + 0.08 + 0.08 + 0.06 + 0.05 = 0.49、F(0...) = 0.49 P(x1=0...)=0.12+0.10+0.08+0.08+0.06+0.05=0.49、F(0...)=0.49
- P ( x 1 = 1... ) = 0.08 + 0.06 + 0.04 + 0.05 + 0.04 + 0.03 = 0.30 、 F ( 1... ) = 0.79 P(x_1 = 1...) = 0.08 + 0.06 + 0.04 + 0.05 + 0.04 + 0.03 = 0.30、F(1...) = 0.79 P(x1=1...)=0.08+0.06+0.04+0.05+0.04+0.03=0.30、F(1...)=0.79
- P ( x 1 = 2... ) = 0.06 + 0.04 + 0.02 + 0.04 + 0.03 + 0.02 = 0.21 、 F ( 2... ) = 1.00 P(x_1 = 2...) = 0.06 + 0.04 + 0.02 + 0.04 + 0.03 + 0.02 = 0.21、F(2...) = 1.00 P(x1=2...)=0.06+0.04+0.02+0.04+0.03+0.02=0.21、F(2...)=1.00
- u ∼ U ( 0 , 1 ) , u = 0.37 , u < F ( 0 ) u \sim U(0, 1),u = 0.37,u < F(0) u∼U(0,1),u=0.37,u<F(0)令: x 10 = 0 x_{10} = 0 x10=0
- x 2 x_2 x2的(条件)边际概率和累积分布:
- P ( x 2 = 0 ∣ x 10 = 0... ) = ( 0.12 + 0.10 + 0.08 ) / 0.49 = 0.612 、 F ( 0 ∣ 0... ) = 0.612 P(x_2 = 0|x_{10} = 0...) = (0.12 + 0.10 + 0.08)/0.49 = 0.612、F(0|0...) = 0.612 P(x2=0∣x10=0...)=(0.12+0.10+0.08)/0.49=0.612、F(0∣0...)=0.612
- P ( x 2 = 1 ∣ x 10 = 0... ) = ( 0.08 + 0.06 + 0.05 ) / 0.49 = 0.388 、 F ( 1 ∣ 0... ) = 1.000 P(x_2 = 1|x_{10} = 0...) = (0.08 + 0.06 + 0.05)/0.49 = 0.388、F(1|0...) = 1.000 P(x2=1∣x10=0...)=(0.08+0.06+0.05)/0.49=0.388、F(1∣0...)=1.000
- u ∼ U ( 0 , 1 ) , u = 0.65 , u < F ( 1 ∣ 0... ) u \sim U(0, 1),u = 0.65,u < F(1|0...) u∼U(0,1),u=0.65,u<F(1∣0...)令: x 20 = 1 x_{20} = 1 x20=1
- x 3 x_3 x3的(条件)边际概率和累积分布:
- P ( x 3 = 1 ∣ x 10 x 20 . . . ) = 0.08 / 0.19 = 0.421 、 F ( 1 ∣ 0 , 1... ) = 0.421 P(x_3 = 1|x_{10}x_{20}...) = 0.08/0.19 = 0.421、F(1|0,1...) = 0.421 P(x3=1∣x10x20...)=0.08/0.19=0.421、F(1∣0,1...)=0.421
- P ( x 3 = 2 ∣ x 10 x 20 . . . ) = 0.06 / 0.19 = 0.316 、 F ( 2 ∣ 0 , 1... ) = 0.737 P(x_3 = 2|x_{10}x_{20}...) = 0.06/0.19 = 0.316、F(2|0,1...) = 0.737 P(x3=2∣x10x20...)=0.06/0.19=0.316、F(2∣0,1...)=0.737
- P ( x 3 = 3 ∣ x 10 x 20 . . . ) = 0.05 / 0.19 = 0.263 、 F ( 3 ∣ 0 , 1... ) = 1.000 P(x_3 = 3|x_{10}x_{20}...) = 0.05/0.19 = 0.263、F(3|0,1...) = 1.000 P(x3=3∣x10x20...)=0.05/0.19=0.263、F(3∣0,1...)=1.000
- u ∼ U ( 0 , 1 ) , u = 0.55 , u < F ( 1 ∣ 0 , 1... ) u \sim U(0, 1),u = 0.55,u < F(1|0,1...) u∼U(0,1),u=0.55,u<F(1∣0,1...)令: x 30 = 2 x_{30} = 2 x30=2
- ( x 10 , x 20 , x 30 ) = ( 0 , 1 , 2 ) (x_{10},x_{20},x_{30}) = (0, 1, 2) (x10,x20,x30)=(0,1,2)
模拟生成多元随机变量
import numpy as np
import matplotlib.pyplot as plt
def multivariateDiscrete(num=10):
x1, x2, x3 = [], [], []
for i in range(10000):
u = np.random.uniform(0, 1)
temp = []
for k, v in {
0:0.49,1:0.79,2:1.0}.items():
if v > u:
temp.append(k)
x1.append(np.min(temp))
u = np.random.uniform(0, 1)
temp = []
for k, v in {
0: 0.612, 1:1.0}.items():
if v > u:
temp.append(k)
x2.append(np.min(temp))
u = np.random.uniform(0, 1)
temp = []
for k, v in {
1:0.412, 2:0.737, 3:1.00}.items():
if v > u:
temp.append(k)
x3.append(np.min(temp))
return x1, x2, x3

边栏推荐
- 墨滴排版
- 信息学奥赛一本通1001:Hello,World!
- kubernetes Unable to connect to the server: x509: certificate has expired or is not yet valid
- EMC surge protection and decoupling design
- 面试突击61:说一下MySQL事务隔离级别?
- 利用多态实现简单的计算器
- Redis installation in windows and Linux Environment
- China soft ice cream market forecast and investment prospect research report (2022 Edition)
- How word automatically generates directories
- Using polymorphism to realize simple calculator
猜你喜欢

CKS CKA CKAD 将终端更改为远程桌面

熊市慢慢,Bit.Store提供稳定Staking产品助你穿越牛熊

宜明昂科冲刺港股:年内亏损7.3亿 礼来与阳光人寿是股东

Huali biology rushes to the scientific innovation board: the annual revenue is RMB 226million and it is planned to raise RMB 800million

部署搭建decentraland流程讲解

知乎热议:一个程序员的水平能差到什么程度?

EXCEL的查询功能Vlookup

EMC surge protection and decoupling design

The first lesson on cloud - how easy is it to build a small broken station? The old driver of cloud computing will take you one hour to finish it

网易严选离线数仓质量建设实践
随机推荐
Analysis of constant current source circuit composed of two NPN tubes
Methods of accessing external services in istio grid
JS 会有变量提升和函数提升
Trigonometric function corresponding to drawing circle on plane coordinate
You need to know about project procurement management
MCS:离散随机变量——几何分布
Uncover the secret! Pay attention to those machines under the membership system!
go学习(四、面向接口)
k8s部署redis哨兵
Practical application cases of drives
[Verilog quick start of Niuke online question series] ~ shift operation and multiplication
Query function of Excel vlookup
If I am in Foshan, where can I open an account? Is it safe to open an account online?
校园跑腿微信小程序跑腿同学带直播新版源码
Campus errands wechat applet errands students with live new source code
Uniapp problem list and experience
wieshark抓包mysql协议简单分析
阿里云体验有奖:使用PolarDB-X与Flink搭建实时数据大屏
kubernetes Unable to connect to the server: x509: certificate has expired or is not yet valid
Chapter 6 picture operation of canvas