当前位置:网站首页>[set theory] Cartesian product (concept of Cartesian product | examples of Cartesian product | properties of Cartesian product | non commutativity | non associativity | distribution law | ordered pair
[set theory] Cartesian product (concept of Cartesian product | examples of Cartesian product | properties of Cartesian product | non commutativity | non associativity | distribution law | ordered pair
2022-07-03 04:17:00 【Programmer community】
List of articles
- One 、 Cartesian product
- Two 、 Examples of Cartesian products
- 3、 ... and 、 Cartesian product property
- Four 、 n Vicat product
- 5、 ... and 、 n The number of Vicat's products
- 6、 ... and 、 n Vicat product property
Front blog : 【 Set theory 】 Ordered pair ( Ordered pair | Ordered triples | Orderly n Yuan Zu )
One 、 Cartesian product
Cartesian product :
A
,
B
A , B
A,B It's two sets , from
A
A
A The element in the set is the first element , from
B
B
B The element in the set is the second element , A set of ordered pairs that meet the above conditions , Called a set
A
A
A And
B
B
B The Cartesian product of ;
Write it down as :
A
×
B
A \times B
A×B
Symbolize :
A
×
B
=
{
<
x
,
y
>
∣
x
∈
A
∧
y
∈
B
}
A \times B = \{ <x, y> | x \in A \land y \in B \}
A×B={ <x,y>∣x∈A∧y∈B}
aggregate
A
A
A And aggregate
B
B
B Of Cartesian product It's a New collection , This new set is a Ordered pair set ;
Two 、 Examples of Cartesian products
aggregate
A
=
{
∅
,
a
}
A = \{ \varnothing , a \}
A={ ∅,a} , aggregate
B
=
{
1
,
2
,
3
}
B = \{ 1, 2, 3 \}
B={ 1,2,3}
A
×
B
=
{
<
∅
,
1
>
,
<
∅
,
2
>
,
<
∅
,
3
>
,
<
a
,
1
>
,
<
a
,
2
>
,
<
a
,
3
>
}
A \times B = \{ <\varnothing , 1> , <\varnothing , 2>, <\varnothing , 3>, <a, 1> , <a, 2> , <a , 3> \}
A×B={ <∅,1>,<∅,2>,<∅,3>,<a,1>,<a,2>,<a,3>}
Each ordered pair The first element comes from
A
A
A aggregate , The second element comes from
B
B
B aggregate ;
B
×
A
=
{
<
1
,
∅
>
,
<
2
,
∅
>
,
<
3
,
∅
>
,
<
1
,
a
>
,
<
2
,
a
>
,
<
3
,
a
>
}
B \times A = \{ <1, \varnothing > , <2, \varnothing >, <3 , \varnothing >, <1, a> , <2, a> , <3, a> \}
B×A={ <1,∅>,<2,∅>,<3,∅>,<1,a>,<2,a>,<3,a>}
The first element of each ordered pair comes from
B
B
B aggregate , The second element comes from
A
A
A aggregate ;
A
×
A
=
{
<
∅
,
∅
>
,
<
∅
,
a
>
,
<
a
,
∅
>
,
<
a
,
a
>
}
A \times A = \{< \varnothing, \varnothing> , <\varnothing, a> , <a, \varnothing> , <a, a> \}
A×A={ <∅,∅>,<∅,a>,<a,∅>,<a,a>}
The first element of each ordered pair comes from
A
A
A aggregate , The second element comes from
A
A
A aggregate ;
B
×
B
=
{
<
1
,
1
>
,
<
1
,
2
>
,
<
1
,
3
>
,
<
2
,
1
>
,
<
2
,
2
>
,
<
2
,
3
>
,
<
3
,
1
>
,
<
3
,
2
>
,
<
3
,
3
>
}
B \times B = \{ <1, 1> , <1, 2> , <1, 3> , <2, 1> , <2, 2> , <2,3> , <3,1> , <3,2> , <3,3> \}
B×B={ <1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}
The first element of each ordered pair comes from
B
B
B aggregate , The second element comes from
B
B
B aggregate ;
3、 ... and 、 Cartesian product property
1. Non exchangeability
A
×
B
≠
B
×
A
A \times B \not= B \times A
A×B=B×A
There are three special cases , Exchangeability is established
①
A
=
B
A = B
A=B
②
A
=
∅
A = \varnothing
A=∅
③
B
=
∅
B = \varnothing
B=∅
2. nonconjugal
(
A
×
B
)
×
C
≠
A
×
(
B
×
C
)
( A \times B ) \times C \not= A \times ( B \times C)
(A×B)×C=A×(B×C)
There are three special cases , The combination is established
①
A
=
∅
A = \varnothing
A=∅
②
B
=
∅
B = \varnothing
B=∅
③
C
=
∅
C = \varnothing
C=∅
3. Distribution rate
A
×
(
B
∪
C
)
=
(
A
×
B
)
∪
(
A
×
C
)
A \times ( B \cup C ) = (A \times B) \cup (A \times C)
A×(B∪C)=(A×B)∪(A×C)
4. The case where the ordered pair is empty
A
×
B
=
∅
⇔
A
=
∅
∨
B
=
∅
A \times B = \varnothing \Leftrightarrow A = \varnothing \lor B= \varnothing
A×B=∅⇔A=∅∨B=∅
Four 、 n Vicat product
n Vicat product :
A
1
×
A
2
×
⋯
×
A
n
=
{
<
x
1
,
x
2
,
⋯
,
x
n
>
∣
x
1
∈
A
1
∧
x
2
∈
A
2
∧
⋯
∧
x
n
∈
A
n
}
A_1 \times A_2 \times \cdots \times A_n = \{ <x_1 , x_2, \cdots , x_n> | x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n \}
A1×A2×⋯×An={ <x1,x2,⋯,xn>∣x1∈A1∧x2∈A2∧⋯∧xn∈An}
n
n
n The Cartesian product of sets ,
n
n
n Vicat product result , Each ordered pair has
n
n
n Elements , Each element is separate In the order specified From here
n
n
n A collection of ;
A
n
=
A
×
A
×
⋯
×
A
⏟
n
individual
A^n = \begin{matrix} \underbrace{ A \times A \times \cdots \times A } \\ n individual \end{matrix}
An=
A×A×⋯×An individual
This is a
n
n
n individual aggregate
A
A
A Of
n
n
n Vicat product ;
5、 ... and 、 n The number of Vicat's products
n
n
n The number of Vicat's products :
∣
A
i
∣
=
n
i
,
i
=
1
,
2
,
⋯
,
n
|A_i| = n_i \ , \ i = 1, 2, \cdots , n
∣Ai∣=ni , i=1,2,⋯,n
⇒
\Rightarrow
⇒
∣
A
1
×
A
2
×
⋯
×
A
n
∣
=
n
1
×
n
2
×
⋯
×
n
n
| A_1 \times A_2 \times \cdots \times A_n | = n_1 \times n_2 \times \cdots \times n_n
∣A1×A2×⋯×An∣=n1×n2×⋯×nn
∣
A
i
∣
=
n
i
|A_i| = n_i
∣Ai∣=ni ,
i
=
1
,
2
,
⋯
,
n
i = 1, 2, \cdots , n
i=1,2,⋯,n : Express The first
i
i
i A collection of
A
i
A_i
Ai The number of elements is
n
i
n_i
ni ;
∣
A
1
×
A
2
×
⋯
×
A
n
∣
| A_1 \times A_2 \times \cdots \times A_n |
∣A1×A2×⋯×An∣ : Express
n
n
n The number of result sets of Cartesian products of sets ;
n
1
×
n
2
×
⋯
×
n
n
n_1 \times n_2 \times \cdots \times n_n
n1×n2×⋯×nn :
n
n
n The result of the Cartesian product of sets ;
6、 ... and 、 n Vicat product property
n Vicat product property : And
2
2
2 Vicat's product has similar properties
边栏推荐
- 深潜Kotlin协程(十九):Flow 概述
- 商城系统搭建完成后需要设置哪些功能
- 因果AI,下一代可信AI的产业升级新范式?
- 使用BENCHMARKSQL工具对KingbaseES执行测试时报错funcs sh file not found
- Busycal latest Chinese version
- Taking two column waterfall flow as an example, how should we build an array of each column
- [no title] 2022 chlorination process examination content and free chlorination process examination questions
- [set theory] set operation (Union | intersection | disjoint | relative complement | symmetric difference | absolute complement | generalized union | generalized intersection | set operation priority)
- 使用BENCHMARKSQL工具对kingbaseES执行灌数据提示无法找到JDBC driver
- Nat. Comm. | 使用Tensor-cell2cell对细胞通讯进行环境感知去卷积
猜你喜欢
[brush questions] connected with rainwater (one dimension)
BMZCTF simple_ pop
『期末复习』16/32位微处理器(8086)基本寄存器
国产PC系统完成闭环,替代美国软硬件体系的时刻已经到来
2022deepbrainchain biweekly report no. 104 (01.16-02.15)
Appium automated testing framework
The time has come for the domestic PC system to complete the closed loop and replace the American software and hardware system
[文献阅读] Sparsity in Deep Learning: Pruning and growth for efficient inference and training in NN
"Final review" 16/32-bit microprocessor (8086) basic register
一名外包仔的2022年中总结
随机推荐
[Apple Photo Album push] IMessage group anchor local push
vim 的实用操作
xrandr修改分辨率與刷新率
Data Lake three swordsmen -- comparative analysis of delta, Hudi and iceberg
Taking two column waterfall flow as an example, how should we build an array of each column
Classes in TS
Solve BP Chinese garbled code
RSRS指标择时及大小盘轮动
Mutex and rwmutex in golang
使用BENCHMARKSQL工具对kingbaseES执行灌数据提示无法找到JDBC driver
[fxcg] market analysis today
Mila、渥太华大学 | 用SE(3)不变去噪距离匹配进行分子几何预训练
[set theory] inclusion exclusion principle (including examples of exclusion principle)
[no title] 2022 chlorination process examination content and free chlorination process examination questions
Drf--- quick start 01
[fairseq] error: typeerror:_ broadcast_ coalesced(): incompatible function arguments
Supervised pre training! Another exploration of text generation!
540. Single element in ordered array
Esp32 series (3): GPIO learning (take simple GPIO input and output, ADC, DAC as examples)
MPLS setup experiment