当前位置:网站首页>[set theory] Cartesian product (concept of Cartesian product | examples of Cartesian product | properties of Cartesian product | non commutativity | non associativity | distribution law | ordered pair
[set theory] Cartesian product (concept of Cartesian product | examples of Cartesian product | properties of Cartesian product | non commutativity | non associativity | distribution law | ordered pair
2022-07-03 04:17:00 【Programmer community】
List of articles
- One 、 Cartesian product
- Two 、 Examples of Cartesian products
- 3、 ... and 、 Cartesian product property
- Four 、 n Vicat product
- 5、 ... and 、 n The number of Vicat's products
- 6、 ... and 、 n Vicat product property
Front blog : 【 Set theory 】 Ordered pair ( Ordered pair | Ordered triples | Orderly n Yuan Zu )
One 、 Cartesian product
Cartesian product :
A
,
B
A , B
A,B It's two sets , from
A
A
A The element in the set is the first element , from
B
B
B The element in the set is the second element , A set of ordered pairs that meet the above conditions , Called a set
A
A
A And
B
B
B The Cartesian product of ;
Write it down as :
A
×
B
A \times B
A×B
Symbolize :
A
×
B
=
{
<
x
,
y
>
∣
x
∈
A
∧
y
∈
B
}
A \times B = \{ <x, y> | x \in A \land y \in B \}
A×B={ <x,y>∣x∈A∧y∈B}
aggregate
A
A
A And aggregate
B
B
B Of Cartesian product It's a New collection , This new set is a Ordered pair set ;
Two 、 Examples of Cartesian products
aggregate
A
=
{
∅
,
a
}
A = \{ \varnothing , a \}
A={ ∅,a} , aggregate
B
=
{
1
,
2
,
3
}
B = \{ 1, 2, 3 \}
B={ 1,2,3}
A
×
B
=
{
<
∅
,
1
>
,
<
∅
,
2
>
,
<
∅
,
3
>
,
<
a
,
1
>
,
<
a
,
2
>
,
<
a
,
3
>
}
A \times B = \{ <\varnothing , 1> , <\varnothing , 2>, <\varnothing , 3>, <a, 1> , <a, 2> , <a , 3> \}
A×B={ <∅,1>,<∅,2>,<∅,3>,<a,1>,<a,2>,<a,3>}
Each ordered pair The first element comes from
A
A
A aggregate , The second element comes from
B
B
B aggregate ;
B
×
A
=
{
<
1
,
∅
>
,
<
2
,
∅
>
,
<
3
,
∅
>
,
<
1
,
a
>
,
<
2
,
a
>
,
<
3
,
a
>
}
B \times A = \{ <1, \varnothing > , <2, \varnothing >, <3 , \varnothing >, <1, a> , <2, a> , <3, a> \}
B×A={ <1,∅>,<2,∅>,<3,∅>,<1,a>,<2,a>,<3,a>}
The first element of each ordered pair comes from
B
B
B aggregate , The second element comes from
A
A
A aggregate ;
A
×
A
=
{
<
∅
,
∅
>
,
<
∅
,
a
>
,
<
a
,
∅
>
,
<
a
,
a
>
}
A \times A = \{< \varnothing, \varnothing> , <\varnothing, a> , <a, \varnothing> , <a, a> \}
A×A={ <∅,∅>,<∅,a>,<a,∅>,<a,a>}
The first element of each ordered pair comes from
A
A
A aggregate , The second element comes from
A
A
A aggregate ;
B
×
B
=
{
<
1
,
1
>
,
<
1
,
2
>
,
<
1
,
3
>
,
<
2
,
1
>
,
<
2
,
2
>
,
<
2
,
3
>
,
<
3
,
1
>
,
<
3
,
2
>
,
<
3
,
3
>
}
B \times B = \{ <1, 1> , <1, 2> , <1, 3> , <2, 1> , <2, 2> , <2,3> , <3,1> , <3,2> , <3,3> \}
B×B={ <1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>}
The first element of each ordered pair comes from
B
B
B aggregate , The second element comes from
B
B
B aggregate ;
3、 ... and 、 Cartesian product property
1. Non exchangeability
A
×
B
≠
B
×
A
A \times B \not= B \times A
A×B=B×A
There are three special cases , Exchangeability is established
①
A
=
B
A = B
A=B
②
A
=
∅
A = \varnothing
A=∅
③
B
=
∅
B = \varnothing
B=∅
2. nonconjugal
(
A
×
B
)
×
C
≠
A
×
(
B
×
C
)
( A \times B ) \times C \not= A \times ( B \times C)
(A×B)×C=A×(B×C)
There are three special cases , The combination is established
①
A
=
∅
A = \varnothing
A=∅
②
B
=
∅
B = \varnothing
B=∅
③
C
=
∅
C = \varnothing
C=∅
3. Distribution rate
A
×
(
B
∪
C
)
=
(
A
×
B
)
∪
(
A
×
C
)
A \times ( B \cup C ) = (A \times B) \cup (A \times C)
A×(B∪C)=(A×B)∪(A×C)
4. The case where the ordered pair is empty
A
×
B
=
∅
⇔
A
=
∅
∨
B
=
∅
A \times B = \varnothing \Leftrightarrow A = \varnothing \lor B= \varnothing
A×B=∅⇔A=∅∨B=∅
Four 、 n Vicat product
n Vicat product :
A
1
×
A
2
×
⋯
×
A
n
=
{
<
x
1
,
x
2
,
⋯
,
x
n
>
∣
x
1
∈
A
1
∧
x
2
∈
A
2
∧
⋯
∧
x
n
∈
A
n
}
A_1 \times A_2 \times \cdots \times A_n = \{ <x_1 , x_2, \cdots , x_n> | x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n \}
A1×A2×⋯×An={ <x1,x2,⋯,xn>∣x1∈A1∧x2∈A2∧⋯∧xn∈An}
n
n
n The Cartesian product of sets ,
n
n
n Vicat product result , Each ordered pair has
n
n
n Elements , Each element is separate In the order specified From here
n
n
n A collection of ;
A
n
=
A
×
A
×
⋯
×
A
⏟
n
individual
A^n = \begin{matrix} \underbrace{ A \times A \times \cdots \times A } \\ n individual \end{matrix}
An=
A×A×⋯×An individual
This is a
n
n
n individual aggregate
A
A
A Of
n
n
n Vicat product ;
5、 ... and 、 n The number of Vicat's products
n
n
n The number of Vicat's products :
∣
A
i
∣
=
n
i
,
i
=
1
,
2
,
⋯
,
n
|A_i| = n_i \ , \ i = 1, 2, \cdots , n
∣Ai∣=ni , i=1,2,⋯,n
⇒
\Rightarrow
⇒
∣
A
1
×
A
2
×
⋯
×
A
n
∣
=
n
1
×
n
2
×
⋯
×
n
n
| A_1 \times A_2 \times \cdots \times A_n | = n_1 \times n_2 \times \cdots \times n_n
∣A1×A2×⋯×An∣=n1×n2×⋯×nn
∣
A
i
∣
=
n
i
|A_i| = n_i
∣Ai∣=ni ,
i
=
1
,
2
,
⋯
,
n
i = 1, 2, \cdots , n
i=1,2,⋯,n : Express The first
i
i
i A collection of
A
i
A_i
Ai The number of elements is
n
i
n_i
ni ;
∣
A
1
×
A
2
×
⋯
×
A
n
∣
| A_1 \times A_2 \times \cdots \times A_n |
∣A1×A2×⋯×An∣ : Express
n
n
n The number of result sets of Cartesian products of sets ;
n
1
×
n
2
×
⋯
×
n
n
n_1 \times n_2 \times \cdots \times n_n
n1×n2×⋯×nn :
n
n
n The result of the Cartesian product of sets ;
6、 ... and 、 n Vicat product property
n Vicat product property : And
2
2
2 Vicat's product has similar properties
边栏推荐
- 220214c language learning diary
- 类的基础语法
- Taking two column waterfall flow as an example, how should we build an array of each column
- Analysis of the reason why the server cannot connect remotely
- [brush questions] most elements (super water king problem)
- 使用BENCHMARKSQL工具对KingbaseES执行测试时报错funcs sh file not found
- BMZCTF simple_ pop
- Practical operation of vim
- 拆一辆十万元的比亚迪“元”,快来看看里面的有哪些元器件。
- 2.14 simulation summary
猜你喜欢

Application of I2C protocol of STM32F103 (read and write EEPROM)

Competitive product analysis and writing

Redis persistence principle

Five elements of user experience

Bisher - based on SSM pet adoption center
![[Apple Photo Album push] IMessage group anchor local push](/img/a7/6a27d646ecba0d7c93f8dac38492a2.jpg)
[Apple Photo Album push] IMessage group anchor local push

JS realizes the animation effect of text and pictures in the visual area

Which Bluetooth headset is good about 400? Four Bluetooth headsets with strong noise reduction are recommended

Daily question - ugly number

JS realizes lazy loading of pictures
随机推荐
[brush questions] connected with rainwater (one dimension)
Drf--- quick start 01
eth入门之DAPP
Solve BP Chinese garbled code
Database management tool, querious direct download
树莓派如何连接WiFi
How to connect WiFi with raspberry pie
[Apple Photo Album push] IMessage group anchor local push
x Problem B
金仓KFS数据双向同步场景部署
How to process the current cell with a custom formula in conditional format- How to address the current cell in conditional format custom formula?
Bisher - based on SSM pet adoption center
The 10th China Cloud Computing Conference · China Station: looking forward to the trend of science and technology in the next decade
【刷题篇】多数元素(超级水王问题)
竞品分析撰写
使用BENCHMARKSQL工具对KingbaseES预热数据时执行:select sys_prewarm(‘NDX_OORDER_2 ‘)报错
What is the correct way to compare ntext columns with constant values- What's the right way to compare an NTEXT column with a constant value?
用户体验五要素
有监督预训练!文本生成又一探索!
Deep dive kotlin synergy (20): build flow