当前位置:网站首页>20211115 any n-order square matrix is similar to triangular matrix (upper triangle or lower triangle)
20211115 any n-order square matrix is similar to triangular matrix (upper triangle or lower triangle)
2022-06-13 09:04:00 【What's my name】
set up A \boldsymbol{A} A by n n n Order matrix , Its characteristic polynomial is
φ ( λ ) = det ( λ I − A ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) \varphi(\lambda)=\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right) φ(λ)=det(λI−A)=(λ−λ1)(λ−λ2)⋯(λ−λn)
For the order of the matrix n n n Prove it by induction .
When n = 1 n=1 n=1 when , The theorem clearly holds . Hypothetical pair n − 1 n-1 n−1 The order matrix theorem holds , by The theorem is proved to be correct n n n Order matrix also holds , set up x 1 , x 2 , ⋯ , x n \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n} x1,x2,⋯,xn yes n n n A linear independent The column vector ( Not all of them are eigenvectors ), among x 1 \boldsymbol{x}_{1} x1 It belongs to A \boldsymbol{A} A The eigenvalues of the λ 1 \lambda_{1} λ1 Of Eigenvector , namely A x 1 = λ 1 x 1 \boldsymbol{A x}_{1}=\lambda_{1} \boldsymbol{x}_{1} Ax1=λ1x1. remember
P 1 = ( x 1 , x 2 , ⋯ , x n ) \boldsymbol{P}_{1}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right) P1=(x1,x2,⋯,xn)
therefore
A P 1 = ( A x 1 , A x 2 , ⋯ , A x n ) = ( λ 1 x 1 , A x 2 , ⋯ , A x n ) \boldsymbol{A P}_{1}=\left(\boldsymbol{A x}_{1}, \boldsymbol{A x}_{2}, \cdots, \boldsymbol{A x}_{n}\right)=\left(\lambda_{1} \boldsymbol{x}_{1}, \boldsymbol{A x}_{2}, \cdots, \boldsymbol{A x}_{n}\right) AP1=(Ax1,Ax2,⋯,Axn)=(λ1x1,Ax2,⋯,Axn)
because A x i ∈ C n \boldsymbol{A x}_{i} \in \mathbf{C}^{n} Axi∈Cn, therefore A x i \boldsymbol{A x}_{i} Axi May by C n \mathbf{C}^{n} Cn Base x 1 , x 2 , ⋯ , x n \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n} x1,x2,⋯,xn Uniquely linear Express , That is to say
A x i = b 1 i x 1 + b 2 i x 2 + ⋯ + b n i x n ( i = 2 , 3 , ⋯ , n ) \boldsymbol{A} \boldsymbol{x}_{i}=b_{1 i} \boldsymbol{x}_{1}+b_{2 i} \boldsymbol{x}_{2}+\cdots+b_{n i} \boldsymbol{x}_{n} \quad(i=2,3, \cdots, n) Axi=b1ix1+b2ix2+⋯+bnixn(i=2,3,⋯,n)
therefore
A P 1 = ( λ 1 x 1 , A x 2 , ⋯ , A x n ) = P 1 [ λ 1 b 12 ⋯ b 1 n 0 b 22 ⋯ b 2 n ⋮ ⋮ ⋮ 0 b n 2 ⋯ b n n ] \begin{aligned} \boldsymbol{A P}_{1}=\left(\lambda_{1} \boldsymbol{x}_{1}, \boldsymbol{A} \boldsymbol{x}_{2}, \cdots, \boldsymbol{A} \boldsymbol{x}_{n}\right)=\boldsymbol{P}_{1}\left[\begin{array}{cccc} \lambda_{1} & b_{12} & \cdots & b_{1 n} \\ 0 & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & & \vdots \\ 0 & b_{n 2} & \cdots & b_{n n} \end{array}\right] \end{aligned} AP1=(λ1x1,Ax2,⋯,Axn)=P1⎣⎢⎢⎢⎡λ10⋮0b12b22⋮bn2⋯⋯⋯b1nb2n⋮bnn⎦⎥⎥⎥⎤
namely
P 1 − 1 A P 1 = [ λ 1 b 12 ⋯ b 1 n 0 ⋮ A 1 0 ] \boldsymbol{P}_{1}^{-1} \boldsymbol{A P}_{1}=\left[\begin{array}{cccc} \lambda_{1} & b_{12} & \cdots & b_{1 n} \\ 0 & & & \\ \vdots & & \boldsymbol{A}_{1} & \\ 0 & & & \end{array}\right] P1−1AP1=⎣⎢⎢⎢⎡λ10⋮0b12⋯A1b1n⎦⎥⎥⎥⎤
According to the theorem 1.14 1.14 1.14, Can be set n − 1 n-1 n−1 Order matrix A 1 \boldsymbol{A}_{1} A1 The characteristic polynomial of is φ 1 ( λ ) = det ( λ I − A 1 ) = ( λ − λ 2 ) ( λ − λ 3 ) ⋯ ( λ − λ n ) \varphi_{1}(\lambda)=\operatorname{det}\left(\lambda \boldsymbol{I}-\boldsymbol{A}_{1}\right)=\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right) \cdots\left(\lambda-\lambda_{n}\right) φ1(λ)=det(λI−A1)=(λ−λ2)(λ−λ3)⋯(λ−λn) Then assume by induction , Yes
Q − 1 A 1 Q = [ λ 2 ∗ ⋱ λ n ] \boldsymbol{Q}^{-1} \boldsymbol{A}_{1} \boldsymbol{Q}=\left[\begin{array}{lll} \lambda_{2} & & * \\ & \ddots & \\ & & \lambda_{n} \end{array}\right] Q−1A1Q=⎣⎡λ2⋱∗λn⎦⎤
remember
P 2 = [ 1 0 T 0 Q ] , P = P 1 P 2 \boldsymbol{P}_{2}=\left[\begin{array}{cc} 1 & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & \boldsymbol{Q} \end{array}\right], \quad \boldsymbol{P}=\boldsymbol{P}_{1} \boldsymbol{P}_{2} P2=[100TQ],P=P1P2
Then there are
P − 1 A P = ( P 1 P 2 ) − 1 A ( P 1 P 2 ) = P 2 − 1 ( P 1 − 1 A P 1 ) P 2 = \boldsymbol{P}^{-1} \boldsymbol{A P}=\left(\boldsymbol{P}_{1} \boldsymbol{P}_{2}\right)^{-1} \boldsymbol{A}\left(\boldsymbol{P}_{1} \boldsymbol{P}_{2}\right)=\boldsymbol{P}_{2}^{-1}\left(\boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1}\right) \boldsymbol{P}_{2}= P−1AP=(P1P2)−1A(P1P2)=P2−1(P1−1AP1)P2=
P 2 − 1 [ λ 1 b 12 ⋯ b 1 n ⋯ ⋮ A 1 0 ] P 2 = [ λ 1 ∗ ⋯ ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] \boldsymbol{P}_{2}^{-1}\left[\begin{array}{cccc}\lambda_{1} & b_{12} & \cdots & b_{1 n} \\ \cdots & & & \\ \vdots & & \boldsymbol{A}_{1} & \\ 0 & & & \end{array}\right] \boldsymbol{P}_{2}=\left[\begin{array}{cccc}\lambda_{1} & * & \cdots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n}\end{array}\right] P2−1⎣⎢⎢⎢⎡λ1⋯⋮0b12⋯A1b1n⎦⎥⎥⎥⎤P2=⎣⎢⎢⎢⎡λ1∗λ2⋯⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
Empathy , It can be concluded that any n Order square matrix and triangular matrix ( Lower triangle ) be similar .
If for A \boldsymbol{A} A , set up x 1 , x 2 , ⋯ , x n \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n} x1,x2,⋯,xn yes n n n A linear independent The column vector ( Not all of them are eigenvectors ), among x n \boldsymbol{x}_{n} xn It belongs to A \boldsymbol{A} A The eigenvalues of the λ n \lambda_{n} λn Of Eigenvector , namely A x n = λ n x n \boldsymbol{A x}_{n}=\lambda_{n} \boldsymbol{x}_{n} Axn=λnxn
reference : Matrix theory , Cheng Yunpeng
边栏推荐
- Tutorial (5.0) 01 Product introduction and installation * fortiedr * Fortinet network security expert NSE 5
- Paging query template of Oracle
- Map 23 summary
- File upload JS
- Uni app essay
- Knowledge points related to system architecture 3
- 基于微信小程序的图书馆管理系统.rar(论文+源码)
- What are the bank financial products? How long is the liquidation period?
- Calculation method of paging
- 15. copy constructor
猜你喜欢

Redirect vulnerability analysis of network security vulnerability analysis

5. Attribute selector

Completely uninstall PostgreSQL under Linux

QT multithreaded TCP server

Some websites of QT (software download, help documents, etc.)

Tutorial (5.0) 02 Management * fortiedr * Fortinet network security expert NSE 5

System analysis - detailed description

Message Oriented Middleware

Tutorial (5.0) 01 Product introduction and installation * fortiedr * Fortinet network security expert NSE 5

Library management system based on wechat applet Rar (thesis + source code)
随机推荐
Knowledge points related to system architecture 2
Object array de encapsulation
Loss outputs Nan for the Nan model
JUC原子引用与ABA问题
教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
Cmake Learning Series I
Drill down to protobuf - Introduction
Simulink的Variant Model和Variant Subsystem用法
类的加载概述
H5 mobile terminal adaptation
[QNX hypervisor 2.2 user manual] 4.5.1 build QNX guest
Opencv gaussianblur() explanation (Sigma value)
【 sécurité 】 comment devenir ingénieur de sécurité de 0 à 1 contre - attaque pour la Fondation zéro
20211104 why are the traces of similar matrices the same
Collection of garbled code problems in idea development environment
File upload JS
Cesium achieves sunny, rainy, foggy, snowy and other effects
Is it safe to open an account online? Can a novice open an account?
Talking about acid of database
图数据库Neo4j介绍