当前位置:网站首页>PyTorch⑥---卷积神经网络_池化层
PyTorch⑥---卷积神经网络_池化层
2022-08-02 14:07:00 【伏月三十】
最大池化
目的:保留输入的特征,同时减少数据量。参数更少了,使得训练的更快。
参数:
kernel_size:卷积核大小
ceil_mode:Ture保留、False不保留
注意输入输出都是四个参数或三个
import torch
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("dataset_CIFAR10",train=False,
download=True,
transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
class Demo(nn.Module):
def __init__(self) -> None:
super().__init__()
self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output=self.maxpool1(input)
return output
demo=Demo()
writer=SummaryWriter("logs_maxpool")
step=0
for data in dataloader:
imgs,targets=data
writer.add_images("input",imgs,step)
output=demo(imgs)
writer.add_images("output",output,step)
step=step+1
writer.close()
边栏推荐
猜你喜欢
随机推荐
The NDK portal: C
Visual studio代码中有红色波浪线解决办法
PyTorch(14)---使用现有的模型及其修改
What?It's 2020, you still can't adapt the screen?
The problem that UIWindow's makeKeyAndVisible does not call viewDidLoad of rootviewController
无人驾驶综述:摘要
关于spark
Using the cloud GPU + pycharm training model to realize automatic background run programs, save training results, the server automatically power off
LLVM系列第八章:算术运算语句Arithmetic Statement
NER(命名体识别)之 FLAT模型
LLVM系列第二十一章:写一个简单的Loop Pass
flutter中App签名
Policy Evaluation收敛性、炼丹与数学家
让深度学习歇一会吧
想做好分布式架构?这个知识点一定要理解透彻
liunx下mysql遇到的简单问题
自定义圆形seekBar,超简单
YOLOv7 uses cloud GPU to train its own dataset
The Handler you really understand?
基于GPT的隐变量表征解码结构