当前位置:网站首页>【Paper】2021_ Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc
【Paper】2021_ Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc
2022-06-30 04:35:00 【Zhao-Jichao】
List of articles
1 Introduction
2 Preliminaries
The non-linear system is described as :
{ x ˙ = A x + B u + E p ( q ) + E w w y = C x + D u + F w w q = C q x (1) \left\{\begin{aligned} \dot{ {x}} =& A {x} + B u + E p({q}) + E_w w \\ {y} =& C {x} + D u + F_w w \\ {q} =& C_q {x} \end{aligned}\right. \tag{1} ⎩⎪⎨⎪⎧x˙=y=q=Ax+Bu+Ep(q)+EwwCx+Du+FwwCqx(1)
3 LMI-Based Conditions for robust global stablization of incrementally quadratic nonlinear systems
The observer is designed as :
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y ) ) + L 2 ( y ^ − y ) y ^ = C x ^ + D u q ^ = C q x ^ (11) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−y) )+L2(y^−y)Cx^+DuCqx^(11)
The feedback control input is
u ( t ) = k ( x ^ ) (12) u(t) = k(\hat{x}) \tag{12} u(t)=k(x^)(12)
Observer based controller (12) The closed-loop system can be expressed as
{ x ˙ = ( A + B K 1 ) x + ( E + B K 2 ) p + B Δ k + E w w e ˙ = ( A + L 2 C ) e − E δ p + ( E w + L 2 F w ) w (15) \left\{\begin{aligned} \dot{ {x}} =& (A+BK_1) {x} + (E + BK_2) p + B \Delta k + E_w w \\ \dot{e} =& (A+L_2 C) e - E \delta p + (E_w + L_2 F_w) w \\ \end{aligned}\right. \tag{15} { x˙=e˙=(A+BK1)x+(E+BK2)p+BΔk+Eww(A+L2C)e−Eδp+(Ew+L2Fw)w(15)
Definition z = ( x e ) z = (\begin{matrix}x \\ e \\ \end{matrix}) z=(xe), Dynamics (15) It can be expressed as
z ˙ = A c z + H 1 p + H 2 δ p + H 3 Δ p + H 4 w (17) \dot{z} = A_c z + H_1 p + H_2 \delta p + H_3 \Delta p + H_4 w \tag{17} z˙=Acz+H1p+H2δp+H3Δp+H4w(17)
A. Block diagonal parameterization
4 ETC design
A. Configuration I: the controller channel is implemented by ETM
The control input is :
u ( t ) = K 1 x ^ s ( t ) + K 2 p ( C q x ^ s ( t ) ) (71) u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71} u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)
B. Configuration II: the controller and observer channels are both implemented by ETMs
y s ( t ) = y ( t k y ) ∀ t ∈ [ t k y , t k + 1 y ) y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y) ys(t)=y(tky) ∀t∈[tky,tk+1y)
here , t 0 y = 0 t_0^y = 0 t0y=0 And trigger the moment t 1 y , t 2 y , ⋯ t_1^y, t_2^y, \cdots t1y,t2y,⋯ Determined by the following trigger rules :
t k + 1 y = inf { t ∣ t ≥ t k y + τ y , ∥ y e ( t ) ∥ > σ y ∥ y ( t ) ∥ + ϵ y } (83) t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83} tk+1y=inf{ t∣ t≥tky+τy, ∥ye(t)∥>σy∥y(t)∥+ϵy}(83)
among y e ( t ) = y s ( t ) − y ( t ) y_e(t) = y_s(t) - y(t) ye(t)=ys(t)−y(t) also τ y , σ y , ϵ y \tau_y, \sigma_y, \epsilon_y τy,σy,ϵy They are all positive numbers .
Combined with sampling information y s ( t ) y_s(t) ys(t), The observer becomes
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y s ) ) + L 2 ( y ^ − y s ) y ^ = C x ^ + D u q ^ = C q x ^ (84) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - \red{y_s})~) + L_2(\hat{y} - \red{y_s}) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{84} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−ys) )+L2(y^−ys)Cx^+DuCqx^(84)
among L 1 , L 2 L_1, L_2 L1,L2 Design matrix .
Observer based control input u ( t ) u(t) u(t) Such as (71) Shown , among x ^ s ( t ) \hat{x}_s(t) x^s(t) Update at the moment t 1 u , t 2 u , ⋯ t_1^u, t_2^u, \cdots t1u,t2u,⋯
x ^ s ( t ) = x ^ ( t k u ) ∀ t ∈ [ t k u , t k + 1 u ) \hat{x}_s(t) = \hat{x} (t_k^u) ~~~~ \forall t \in [t_k^u, t_{k+1}^u) x^s(t)=x^(tku) ∀t∈[tku,tk+1u)
here , t 0 u = 0 t_0^u = 0 t0u=0 And trigger the moment t 1 u , t 2 u , ⋯ t_1^u, t_2^u, \cdots t1u,t2u,⋯ Determined by the following trigger rules :
t k + 1 u = inf { t ∣ t ≥ t k u + τ u , ∥ x ^ e ( t ) ∥ > σ u ∥ x ^ ( t ) ∥ + ϵ u } (85) t_{k+1}^u = \inf \{ t | ~~~t \ge t_k^u + \tau_u, ~~~\|\hat{x}_e(t)\| > \sigma_u \| \hat{x}(t) \| + \epsilon_u \} \tag{85} tk+1u=inf{ t∣ t≥tku+τu, ∥x^e(t)∥>σu∥x^(t)∥+ϵu}(85)
among x ^ e ( t ) = x ^ ( t k ) − x ^ ( t ) \hat{x}_e(t) = \hat{x}(t_k) - \hat{x}(t) x^e(t)=x^(tk)−x^(t) also τ u , σ u , ϵ u \tau_u, \sigma_u, \epsilon_u τu,σu,ϵu They are all positive numbers . Be careful x ^ \hat{x} x^ and x ^ e \hat{x}_e x^e The information can be obtained from the designed observer .
5 Simulation example
x ˙ 1 = x 2 x ˙ 2 = − sin ( x 1 ) + u + w y = x 1 \begin{aligned} \dot{x}_1 =& x_2 \\ \dot{x}_2 =& -\sin(x_1) + u + w \\ y =& x_1 \\ \end{aligned} x˙1=x˙2=y=x2−sin(x1)+u+wx1
The observer is designed as
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y ) ) + L 2 ( y ^ − y ) y ^ = C x ^ + D u q ^ = C q x ^ (11) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−y) )+L2(y^−y)Cx^+DuCqx^(11)
During simulation, the parameters are assumed to be L 1 = − 1 , L 2 = [ − 5.1294 , − 18.0352 ] T , p ( q ^ ) = sin ( q ^ ) , C q = ( 1 , 0 ) L_1 = -1, L_2 = [-5.1294, -18.0352]^\text{T}, p(\hat{q}) = \sin(\hat{q}), C_q = (1, 0) L1=−1,L2=[−5.1294,−18.0352]T,p(q^)=sin(q^),Cq=(1,0).
Because the observations y ^ \hat{y} y^ Often obtained by sensors , So the assumption here is y ^ = y \hat{y} = y y^=y, So there is
{ x ^ ˙ = A x ^ + B u + E p ( q ^ ) q ^ = C q x ^ \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \hat{q} =& C_q \hat{x} \\ \end{aligned}\right. { x^˙=q^=Ax^+Bu+Ep( q^ )Cqx^
The feedback control input is
u ( t ) = k ( x ^ ) (12) u(t) = k(\hat{x}) \tag{12} u(t)=k(x^)(12)
u ( t ) = K 1 x ^ s ( t ) + K 2 p ( C q x ^ s ( t ) ) (71) u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71} u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)
The parameter is assumed to be K 1 = ( − 7.3936 , − 3.9937 ) , K 2 = 1 K_1 = (-7.3936, -3.9937), K_2 = 1 K1=(−7.3936,−3.9937),K2=1.
and w w w is uniformly generated from [ − w 0 , w 0 ] [-w_0, w_0] [−w0,w0].
Combined with the above analysis process , Observations can be solved in the following way x ^ \hat{x} x^
{ q ^ = C q x ^ u = K 1 x ^ ( t ) + K 2 p ( q ^ ) x ^ ˙ = A x ^ + B u + E p ( q ^ ) \left\{\begin{aligned} \hat{q} =& C_q \hat{x} \\ u =& K_1 \hat{x}(t) + K_2 p(~\hat{q}~) \\ \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \end{aligned}\right. ⎩⎪⎨⎪⎧q^=u=x^˙=Cqx^K1x^(t)+K2p( q^ )Ax^+Bu+Ep( q^ )

after , In the same way , Combine the formula (1) Find out the system state .

The error diagram is as follows , Used to compare... In the original text Fig.4.
The next analysis ETC
y s ( t ) = y ( t k y ) ∀ t ∈ [ t k y , t k + 1 y ) y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y) ys(t)=y(tky) ∀t∈[tky,tk+1y)
here , t 0 y = 0 t_0^y = 0 t0y=0 And trigger the moment t 1 y , t 2 y , ⋯ t_1^y, t_2^y, \cdots t1y,t2y,⋯ Determined by the following trigger rules :
t k + 1 y = inf { t ∣ t ≥ t k y + τ y , ∥ y e ( t ) ∥ > σ y ∥ y ( t ) ∥ + ϵ y } (83) t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83} tk+1y=inf{ t∣ t≥tky+τy, ∥ye(t)∥>σy∥y(t)∥+ϵy}(83)
among y e ( t ) = y s ( t ) − y ( t ) y_e(t) = y_s(t) - y(t) ye(t)=ys(t)−y(t) also τ y , σ y , ϵ y \tau_y, \sigma_y, \epsilon_y τy,σy,ϵy They are all positive numbers .
k = 0 , t 1 y = inf { t ∣ t ≥ 0 + 1.07 ∗ 1 e − 4 , ∥ y e ( t ) ∥ > 0.0017 ∥ y ( t ) ∥ + 0.005 } k = 1 , t 2 y = inf { t ∣ t ≥ t 1 y + 1.07 ∗ 1 e − 4 , ∥ y e ( t ) ∥ > 0.0017 ∥ y ( t ) ∥ + 0.005 } k = 2 , t 3 y = k = 3 , t 4 y = \begin{aligned} k = 0, t_1^y =& \inf \{ t | ~~~t \ge 0 + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 1, t_2^y =& \inf \{ t | ~~~t \ge t_1^y + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 2, t_3^y =& \\ k = 3, t_4^y =& \\ \end{aligned} k=0,t1y=k=1,t2y=k=2,t3y=k=3,t4y=inf{ t∣ t≥0+1.07∗1e−4, ∥ye(t)∥>0.0017∥y(t)∥+0.005}inf{ t∣ t≥t1y+1.07∗1e−4, ∥ye(t)∥>0.0017∥y(t)∥+0.005}



边栏推荐
- Interview topic of MySQL
- 管道实现进程间通信之命名管道
- FortiGate firewall quick initialization administrator password
- The difference between get and post requests
- Redis实现短信登入功能(二)Redis实现登入功能
- 【WEBRTC】ADM: rtc_ include_ internal_ audio_ Device triggers RTC_ Dcheck (ADM) assertion
- [fpga] implementation of IIC read / write EEPROM
- What is the difference between synchronized and lock
- Default value of JS parameter
- The most comprehensive summary notes of redis foundation + advanced project in history
猜你喜欢

Redis implements SMS login function (I) traditional session login

Input / output and interrupt technology -- microcomputer Chapter 6 learning notes

Intern method of string

Myrpc version 4

Transport layer protocol tcp/udp

FortiGate firewall configuration log uploading regularly

管道实现进程间通信之命名管道

Redis实现短信登入功能(一)传统的Session登入

OneNote production schedule
![Salary management system based on servlet+jsp+mysql [source code + database]](/img/4a/6015cf17f4297691e97b48a5592fc5.png)
Salary management system based on servlet+jsp+mysql [source code + database]
随机推荐
iMile 利用 Zadig 多云环境周部署千次,跨云跨地域持续交付全球业务
Qt Creator 8 Beta2发布
OneNote production schedule
Differences between beanfactory and factorybean
Salary management system based on servlet+jsp+mysql [source code + database]
Encapsulating JDBC tool classes
How the FortiGate firewall rejects a port by using the local in policy policy
Introduction to system programming
Qt6 QML Book/Qt Quick 3D/Qt Quick 3D
Configure specific source IP in SLA detection of FortiGate sdwan
One interview question a day - the underlying implementation of synchronize and the lock upgrade process
Indefinite parameters of JS function
Imile uses Zadig's multi cloud environment to deploy thousands of times a week to continuously deliver global business across clouds and regions
Threejs realizes the simulation of river, surface flow, pipe flow and sea surface
Fair lock and unfair lock
Refers to the difference between IP and *ip at output
Bean创建流程 与 lazy-init 延迟加载机制原理
Serializable and Deserialize
Tea mall system based on SSM framework [project source code + database script + report]
What is an optocoupler circuit and what should be paid attention to in actual use?