当前位置:网站首页>【Paper】2021_ Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc
【Paper】2021_ Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc
2022-06-30 04:35:00 【Zhao-Jichao】
List of articles
1 Introduction
2 Preliminaries
The non-linear system is described as :
{ x ˙ = A x + B u + E p ( q ) + E w w y = C x + D u + F w w q = C q x (1) \left\{\begin{aligned} \dot{ {x}} =& A {x} + B u + E p({q}) + E_w w \\ {y} =& C {x} + D u + F_w w \\ {q} =& C_q {x} \end{aligned}\right. \tag{1} ⎩⎪⎨⎪⎧x˙=y=q=Ax+Bu+Ep(q)+EwwCx+Du+FwwCqx(1)
3 LMI-Based Conditions for robust global stablization of incrementally quadratic nonlinear systems
The observer is designed as :
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y ) ) + L 2 ( y ^ − y ) y ^ = C x ^ + D u q ^ = C q x ^ (11) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−y) )+L2(y^−y)Cx^+DuCqx^(11)
The feedback control input is
u ( t ) = k ( x ^ ) (12) u(t) = k(\hat{x}) \tag{12} u(t)=k(x^)(12)
Observer based controller (12) The closed-loop system can be expressed as
{ x ˙ = ( A + B K 1 ) x + ( E + B K 2 ) p + B Δ k + E w w e ˙ = ( A + L 2 C ) e − E δ p + ( E w + L 2 F w ) w (15) \left\{\begin{aligned} \dot{ {x}} =& (A+BK_1) {x} + (E + BK_2) p + B \Delta k + E_w w \\ \dot{e} =& (A+L_2 C) e - E \delta p + (E_w + L_2 F_w) w \\ \end{aligned}\right. \tag{15} { x˙=e˙=(A+BK1)x+(E+BK2)p+BΔk+Eww(A+L2C)e−Eδp+(Ew+L2Fw)w(15)
Definition z = ( x e ) z = (\begin{matrix}x \\ e \\ \end{matrix}) z=(xe), Dynamics (15) It can be expressed as
z ˙ = A c z + H 1 p + H 2 δ p + H 3 Δ p + H 4 w (17) \dot{z} = A_c z + H_1 p + H_2 \delta p + H_3 \Delta p + H_4 w \tag{17} z˙=Acz+H1p+H2δp+H3Δp+H4w(17)
A. Block diagonal parameterization
4 ETC design
A. Configuration I: the controller channel is implemented by ETM
The control input is :
u ( t ) = K 1 x ^ s ( t ) + K 2 p ( C q x ^ s ( t ) ) (71) u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71} u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)
B. Configuration II: the controller and observer channels are both implemented by ETMs
y s ( t ) = y ( t k y ) ∀ t ∈ [ t k y , t k + 1 y ) y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y) ys(t)=y(tky) ∀t∈[tky,tk+1y)
here , t 0 y = 0 t_0^y = 0 t0y=0 And trigger the moment t 1 y , t 2 y , ⋯ t_1^y, t_2^y, \cdots t1y,t2y,⋯ Determined by the following trigger rules :
t k + 1 y = inf { t ∣ t ≥ t k y + τ y , ∥ y e ( t ) ∥ > σ y ∥ y ( t ) ∥ + ϵ y } (83) t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83} tk+1y=inf{ t∣ t≥tky+τy, ∥ye(t)∥>σy∥y(t)∥+ϵy}(83)
among y e ( t ) = y s ( t ) − y ( t ) y_e(t) = y_s(t) - y(t) ye(t)=ys(t)−y(t) also τ y , σ y , ϵ y \tau_y, \sigma_y, \epsilon_y τy,σy,ϵy They are all positive numbers .
Combined with sampling information y s ( t ) y_s(t) ys(t), The observer becomes
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y s ) ) + L 2 ( y ^ − y s ) y ^ = C x ^ + D u q ^ = C q x ^ (84) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - \red{y_s})~) + L_2(\hat{y} - \red{y_s}) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{84} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−ys) )+L2(y^−ys)Cx^+DuCqx^(84)
among L 1 , L 2 L_1, L_2 L1,L2 Design matrix .
Observer based control input u ( t ) u(t) u(t) Such as (71) Shown , among x ^ s ( t ) \hat{x}_s(t) x^s(t) Update at the moment t 1 u , t 2 u , ⋯ t_1^u, t_2^u, \cdots t1u,t2u,⋯
x ^ s ( t ) = x ^ ( t k u ) ∀ t ∈ [ t k u , t k + 1 u ) \hat{x}_s(t) = \hat{x} (t_k^u) ~~~~ \forall t \in [t_k^u, t_{k+1}^u) x^s(t)=x^(tku) ∀t∈[tku,tk+1u)
here , t 0 u = 0 t_0^u = 0 t0u=0 And trigger the moment t 1 u , t 2 u , ⋯ t_1^u, t_2^u, \cdots t1u,t2u,⋯ Determined by the following trigger rules :
t k + 1 u = inf { t ∣ t ≥ t k u + τ u , ∥ x ^ e ( t ) ∥ > σ u ∥ x ^ ( t ) ∥ + ϵ u } (85) t_{k+1}^u = \inf \{ t | ~~~t \ge t_k^u + \tau_u, ~~~\|\hat{x}_e(t)\| > \sigma_u \| \hat{x}(t) \| + \epsilon_u \} \tag{85} tk+1u=inf{ t∣ t≥tku+τu, ∥x^e(t)∥>σu∥x^(t)∥+ϵu}(85)
among x ^ e ( t ) = x ^ ( t k ) − x ^ ( t ) \hat{x}_e(t) = \hat{x}(t_k) - \hat{x}(t) x^e(t)=x^(tk)−x^(t) also τ u , σ u , ϵ u \tau_u, \sigma_u, \epsilon_u τu,σu,ϵu They are all positive numbers . Be careful x ^ \hat{x} x^ and x ^ e \hat{x}_e x^e The information can be obtained from the designed observer .
5 Simulation example
x ˙ 1 = x 2 x ˙ 2 = − sin ( x 1 ) + u + w y = x 1 \begin{aligned} \dot{x}_1 =& x_2 \\ \dot{x}_2 =& -\sin(x_1) + u + w \\ y =& x_1 \\ \end{aligned} x˙1=x˙2=y=x2−sin(x1)+u+wx1
The observer is designed as
{ x ^ ˙ = A x ^ + B u + E p ( q ^ + L 1 ( y ^ − y ) ) + L 2 ( y ^ − y ) y ^ = C x ^ + D u q ^ = C q x ^ (11) \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11} ⎩⎪⎨⎪⎧x^˙=y^=q^=Ax^+Bu+Ep( q^+L1(y^−y) )+L2(y^−y)Cx^+DuCqx^(11)
During simulation, the parameters are assumed to be L 1 = − 1 , L 2 = [ − 5.1294 , − 18.0352 ] T , p ( q ^ ) = sin ( q ^ ) , C q = ( 1 , 0 ) L_1 = -1, L_2 = [-5.1294, -18.0352]^\text{T}, p(\hat{q}) = \sin(\hat{q}), C_q = (1, 0) L1=−1,L2=[−5.1294,−18.0352]T,p(q^)=sin(q^),Cq=(1,0).
Because the observations y ^ \hat{y} y^ Often obtained by sensors , So the assumption here is y ^ = y \hat{y} = y y^=y, So there is
{ x ^ ˙ = A x ^ + B u + E p ( q ^ ) q ^ = C q x ^ \left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \hat{q} =& C_q \hat{x} \\ \end{aligned}\right. { x^˙=q^=Ax^+Bu+Ep( q^ )Cqx^
The feedback control input is
u ( t ) = k ( x ^ ) (12) u(t) = k(\hat{x}) \tag{12} u(t)=k(x^)(12)
u ( t ) = K 1 x ^ s ( t ) + K 2 p ( C q x ^ s ( t ) ) (71) u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71} u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)
The parameter is assumed to be K 1 = ( − 7.3936 , − 3.9937 ) , K 2 = 1 K_1 = (-7.3936, -3.9937), K_2 = 1 K1=(−7.3936,−3.9937),K2=1.
and w w w is uniformly generated from [ − w 0 , w 0 ] [-w_0, w_0] [−w0,w0].
Combined with the above analysis process , Observations can be solved in the following way x ^ \hat{x} x^
{ q ^ = C q x ^ u = K 1 x ^ ( t ) + K 2 p ( q ^ ) x ^ ˙ = A x ^ + B u + E p ( q ^ ) \left\{\begin{aligned} \hat{q} =& C_q \hat{x} \\ u =& K_1 \hat{x}(t) + K_2 p(~\hat{q}~) \\ \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \end{aligned}\right. ⎩⎪⎨⎪⎧q^=u=x^˙=Cqx^K1x^(t)+K2p( q^ )Ax^+Bu+Ep( q^ )

after , In the same way , Combine the formula (1) Find out the system state .

The error diagram is as follows , Used to compare... In the original text Fig.4.
The next analysis ETC
y s ( t ) = y ( t k y ) ∀ t ∈ [ t k y , t k + 1 y ) y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y) ys(t)=y(tky) ∀t∈[tky,tk+1y)
here , t 0 y = 0 t_0^y = 0 t0y=0 And trigger the moment t 1 y , t 2 y , ⋯ t_1^y, t_2^y, \cdots t1y,t2y,⋯ Determined by the following trigger rules :
t k + 1 y = inf { t ∣ t ≥ t k y + τ y , ∥ y e ( t ) ∥ > σ y ∥ y ( t ) ∥ + ϵ y } (83) t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83} tk+1y=inf{ t∣ t≥tky+τy, ∥ye(t)∥>σy∥y(t)∥+ϵy}(83)
among y e ( t ) = y s ( t ) − y ( t ) y_e(t) = y_s(t) - y(t) ye(t)=ys(t)−y(t) also τ y , σ y , ϵ y \tau_y, \sigma_y, \epsilon_y τy,σy,ϵy They are all positive numbers .
k = 0 , t 1 y = inf { t ∣ t ≥ 0 + 1.07 ∗ 1 e − 4 , ∥ y e ( t ) ∥ > 0.0017 ∥ y ( t ) ∥ + 0.005 } k = 1 , t 2 y = inf { t ∣ t ≥ t 1 y + 1.07 ∗ 1 e − 4 , ∥ y e ( t ) ∥ > 0.0017 ∥ y ( t ) ∥ + 0.005 } k = 2 , t 3 y = k = 3 , t 4 y = \begin{aligned} k = 0, t_1^y =& \inf \{ t | ~~~t \ge 0 + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 1, t_2^y =& \inf \{ t | ~~~t \ge t_1^y + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 2, t_3^y =& \\ k = 3, t_4^y =& \\ \end{aligned} k=0,t1y=k=1,t2y=k=2,t3y=k=3,t4y=inf{ t∣ t≥0+1.07∗1e−4, ∥ye(t)∥>0.0017∥y(t)∥+0.005}inf{ t∣ t≥t1y+1.07∗1e−4, ∥ye(t)∥>0.0017∥y(t)∥+0.005}



边栏推荐
- Learning about signals
- Refers to the difference between IP and *ip at output
- How to renew an SSL certificate
- Difference between TCP three handshakes and four waves and tcp/udp
- The subsystem implementing transaction persistence in DBMS is ()
- Encapsulating JDBC tool classes
- Detailed explanation of network layer
- FortiGate firewall and Aruze cloud tunnel interruption
- Explain the underlying principles of JVM garbage collection in simple terms
- iMile 利用 Zadig 多云环境周部署千次,跨云跨地域持续交付全球业务
猜你喜欢

OneNote software

Junior students summarize JS advanced interview questions

Redis实现短信登入功能(一)传统的Session登入

JS inheritance

Interprocess communication

FortiGate configures multiple server IPS as link monitor monitoring objects on the same interface

Learn about threads

This connection is not a private connection this website may be pretending to steal your personal or financial information

How to use div boxes to simulate line triangles
![Tea mall system based on SSM framework [project source code + database script + report]](/img/d9/0a46c0da9839a7186bd3a9ae55f0a5.png)
Tea mall system based on SSM framework [project source code + database script + report]
随机推荐
Difference between TCP three handshakes and four waves and tcp/udp
Myrpc version 2
My idea configuration
How to renew an SSL certificate
【WEBRTC】ADM: rtc_include_internal_audio_device 触发 RTC_DCHECK(adm) 断言
Qt6 QML Book/Qt Quick 3D/Qt Quick 3D
Servlet lifecycle
Redis implements SMS login function (II) redis implements login function
Issue SSL certificate with IP address
Es2019 key summary
JS file block to Base64 text
Es2017 key summary
Interprocess communication
Troubleshooting of abnormal communication between FortiGate and fortiguard cloud
【WEBRTC】ADM: rtc_ include_ internal_ audio_ Device triggers RTC_ Dcheck (ADM) assertion
Modifier of JS regular expression
7-3 single source shortest circuit for strange play upgrade
Internship: interface case implementation
oslo_ config. cfg. ConfigFileParseError: Failed to parse /etc/glance/glance-api. Conf: a solution to errors
Websocket implementation principle