当前位置:网站首页>【Paper】2019_ Consensus Control of Multiple AUVs Recovery System Under Switching Topologies and Time D
【Paper】2019_ Consensus Control of Multiple AUVs Recovery System Under Switching Topologies and Time D
2022-06-30 04:35:00 【Zhao-Jichao】
link :【Paper】2017_ Research on coordinated control method of underwater vehicle formation marine survey
List of articles
I. INTRODUCTION
II. PROBLEM FORMULATION
A. GRAPH THEORY
B. THE AUV MODEL
combination Eq.(2.7) Sum formula (2.8), available AUV A feedback linearized dynamic model in standard second-order integral form :
x ˙ i = v i v ˙ i = u i (2.9) \begin{aligned} \dot{x}_i = v_i \\ \dot{v}_i = u_i \\ \end{aligned} \tag{2.9} x˙i=viv˙i=ui(2.9)
among , x i ∈ R 5 , v i ∈ R 5 , u i ∈ R 5 x_i \in \R^5, v_i \in \R^5, u_i \in \R^5 xi∈R5,vi∈R5,ui∈R5.
C. LEMMA
III. CONSENSUS CONTROL UNDER SWITCHING TOPOLOGIES AND TIME DELAYS
As mentioned earlier , Next, we will introduce the switching topology and the multi - node scheme with time delay AUV Restore the consistency control algorithm of the system . Mother ship and many AUV Run in the form of random switching topology . Suppose the interconnection topology is Markov switching , Markov chain describing switching process has a stationary probability distribution . Since the graph is allowed to be time-varying , We assume that there is M M M Two possible different graphs , The network topology switches between them .
A. DESIGN PROCEDURE
In this section , Many assumptions AUV The consensus control algorithm of the recovery system can ensure that all members reach the common motion state and expectation point . The mother ship is considered to be all AUV The point that must be pursued , Multiple AUV The recovery problem of can also be regarded as the consensus problem of multi member systems .
Definition 1
In a AUV In a system composed of , The first i i i individual AUV In time t t t The motion state vector of is x i ( t ) x_i(t) xi(t), The motion state of the mother ship is x m ( t ) x_m(t) xm(t). If the system satisfies the following formula , The recycling system can achieve consistency , And guarantee that AUV Be able to follow the mother ship continuously and stably .
lim t → ∞ = ∥ x i ( t ) − x m ( t ) ∥ = 0 \lim_{t\rightarrow \infty} = \| x_i(t) - x_m(t) \| = 0 t→∞lim=∥xi(t)−xm(t)∥=0
According to dynamics (2.9), The consistency algorithm considering mother ship dynamics is
x ˙ m ( t ) = v m ( t ) \dot{x}_{m}(t) = v_m(t) x˙m(t)=vm(t)
Define a group of independent topologies auv The dynamics of is as follows :
x ˙ i ( t ) = v i ( t ) v ˙ i ( t ) = u i ( t ) \begin{aligned} \dot{x}_i(t) = v_i(t) \\ \dot{v}_i(t) = u_i(t) \\ \end{aligned} x˙i(t)=vi(t)v˙i(t)=ui(t)
Consider a reason for AUV Composed of many AUV Recycling system , Each one AUV Treat as a directed graph G G G One of the nodes in , Utilization (2.9) in AUV Standard dual integrator dynamics , Based on the consensus algorithm, the following consensus control can be designed :
Define a group of independent topologies auv The dynamics of is as follows :
u i ( t ) = − K ∑ j ∈ N i a i j ( t ) ( ( p i ( t ) − p j ( t ) ) + ( v i ( t ) − v j ( t ) ) ) − K c i ( t ) ( ( p i ( t ) − p m ( t ) ) + ( v i ( t ) − v m ( t ) ) ) (3.1) \begin{aligned} u_i(t) = &-K \sum_{j\in N_i} a_{ij}(t) (~(\red{p_i(t)} - \green{p_j(t)}) + (\red{v_i(t)}-\green{v_j(t)})~) \\ &-K c_i(t) (~(\red{p_i(t)} - \blue{p_m(t)}) + (\red{v_i(t)}-\blue{v_m(t)})~) \\ \end{aligned} \tag{3.1} ui(t)=−Kj∈Ni∑aij(t)( (pi(t)−pj(t))+(vi(t)−vj(t)) )−Kci(t)( (pi(t)−pm(t))+(vi(t)−vm(t)) )(3.1)
Due to limited communication , It is easy to cause delay . A consensus algorithm with delay is given
u i ( t ) = − K ∑ j ∈ N i a i j ( t ) ( ( p i ( t − τ 1 ) − p j ( t − τ 1 − τ 2 ) ) + ( v i ( t − τ 1 ) − v j ( t − τ 1 − τ 2 ) ) ) − K c i ( t ) ( ( p i ( t − τ 1 ) − p m ( t ) ) + ( v i ( t − τ 1 ) − v m ( t ) ) ) (3.2) \begin{aligned} u_i(t) = &-K \sum_{j\in N_i} a_{ij}(t) (~(\red{p_i(t-\tau_1)} - \green{p_j(t-\tau_1-\tau_2)}) + (\red{v_i(t-\tau_1)}-\green{v_j(t-\tau_1-\tau_2)})~) \\ &-K c_i(t) (~(\red{p_i(t-\tau_1)} - \blue{p_m(t)}) + (\red{v_i(t-\tau_1)}-\blue{v_m(t)})~) \\ \end{aligned} \tag{3.2} ui(t)=−Kj∈Ni∑aij(t)( (pi(t−τ1)−pj(t−τ1−τ2))+(vi(t−τ1)−vj(t−τ1−τ2)) )−Kci(t)( (pi(t−τ1)−pm(t))+(vi(t−τ1)−vm(t)) )(3.2)
u i u_i ui: Is the control input
K K K: Yes protocol gain
p i ∈ R n p_i \in \R^n pi∈Rn: Is the position state
v i ∈ R n v_i \in \R^n vi∈Rn: Is the speed state
p m ∈ R n p_m \in \R^n pm∈Rn: Is the mother ship position status
v m ∈ R n v_m \in \R^n vm∈Rn: Is the speed status of the mother ship
a i j ( t ) a_{ij}(t) aij(t): Communication weight
c m ( t ) c_{m}(t) cm(t): Communication weight with mother ship
C = diag { c 1 , c 2 , ⋯ , c N } C = \text{diag}\{c_1, c_2, \cdots, c_N\} C=diag{ c1,c2,⋯,cN}
τ 1 , τ 2 ( t ) \tau_1, \tau_2(t) τ1,τ2(t): Respectively represent the input ( Constant ) And communication weights ( Time varying in the interval )
Mother ship and the i i i individual AUV The status of is
x m ( t ) = [ p m T ( t ) v m T ( t ) ] T ∈ R 10 n x i ( t ) = [ p i T ( t ) v i T ( t ) ] T ∈ R 10 n \begin{aligned} x_m(t) = \left[\begin{matrix} p^\text{T}_m(t) & v^\text{T}_m(t) \end{matrix}\right]^\text{T} \in \R^{10n} \\ x_i(t) = \left[\begin{matrix} p^\text{T}_i(t) & v^\text{T}_i(t) \end{matrix}\right]^\text{T} \in \R^{10n} \\ \end{aligned} xm(t)=[pmT(t)vmT(t)]T∈R10nxi(t)=[piT(t)viT(t)]T∈R10n
The above recovery problem is transformed into an error analysis problem , Definition No i i i individual AUV The system state error vector relative to the motion state information of the Mothership is
ε i ( t ) = x i ( t ) − x m ( t ) \varepsilon_i(t) = x_i(t) - x_m(t) εi(t)=xi(t)−xm(t)
Definition
ε ( t ) = ( ε 1 T ( t ) , ε 2 T ( t ) , ⋯ , ε N T ( t ) ) T \varepsilon(t) = (\varepsilon_1^\text{T}(t), \varepsilon_2^\text{T}(t), \cdots, \varepsilon_N^\text{T}(t))^\text{T} ε(t)=(ε1T(t),ε2T(t),⋯,εNT(t))T,
ε ( t ) = [ ε p T ( t ) ε v T ( t ) ] T \varepsilon(t) = \left[\begin{matrix} \varepsilon^\text{T}_p(t) & \varepsilon^\text{T}_v(t) \end{matrix}\right]^\text{T} ε(t)=[εpT(t)εvT(t)]T
here
ε p ( t ) , ε v ( t ) \varepsilon_p(t), \varepsilon_v(t) εp(t),εv(t) Respectively represent the error of position state and speed state .
Then the system can be transformed into the following matrix form
ε ˙ ( t ) = ( I n ⊗ A ) ε ( t ) − B ⊗ K ε ( t − τ 1 ) + C ⊗ K ε ( t − μ ) (3.3) \dot{\varepsilon}(t) = (I_n \otimes A) ~\varepsilon(t) - B \otimes K ~\varepsilon(t-\tau_1) + C \otimes K ~\varepsilon(t-\mu) \tag{3.3} ε˙(t)=(In⊗A) ε(t)−B⊗K ε(t−τ1)+C⊗K ε(t−μ)(3.3)
The original formula is as follows , But there's a problem , The revised ones are as follows :
ε ˙ ( t ) = ( I n ⊗ A ) ε ( t ) − ( I n ⊗ K i B ) ε ( t − τ 1 ) + ( I n ⊗ K i C ) ε ( t − μ ) (3.3) \dot{\varepsilon}(t) = (I_n \otimes A) ~\varepsilon(t) - (I_n\otimes K_i B) ~\varepsilon(t-\tau_1) + (I_n \otimes K_i C) ~\varepsilon(t-\mu) \tag{3.3} ε˙(t)=(In⊗A) ε(t)−(In⊗KiB) ε(t−τ1)+(In⊗KiC) ε(t−μ)(3.3)
here
μ = τ 1 + τ 2 \mu = \tau_1 + \tau_2 μ=τ1+τ2
A = [ 0 I 0 0 ] ∈ R 10 × 10 A = \left[\begin{matrix} 0 & I \\ 0 & 0 \\ \end{matrix}\right] \in \R^{10 \times 10} A=[00I0]∈R10×10
B = [ 0 0 D + C D + C ] ∈ R 10 × 10 B = \left[\begin{matrix} 0 & 0 \\ \mathcal{D} + \mathcal{C} & \mathcal{D} + \mathcal{C} \\ \end{matrix}\right] \in \R^{10 \times 10} B=[0D+C0D+C]∈R10×10
C = [ 0 0 A A ] ∈ R 10 × 10 C = \left[\begin{matrix} 0 & 0 \\ \mathcal{A} & \mathcal{A} \\ \end{matrix}\right] \in \R^{10 \times 10} C=[0A0A]∈R10×10
A = [ a i j ] ∈ R 5 × 5 \mathcal{A} = \left[\begin{matrix} a_{ij} \end{matrix}\right] \in \R^{5 \times 5} A=[aij]∈R5×5
C = diag { c 1 , c 2 , ⋯ , c N } ∈ R 5 × 5 \mathcal{C} = \text{diag}\{c_1, c_2, \cdots, c_N\} \in \R^{5 \times 5} C=diag{ c1,c2,⋯,cN}∈R5×5
D = diag { ∑ j ∈ N 1 a 1 j , ∑ j ∈ N 2 a 2 j , ⋯ , ∑ j ∈ N N a N j } ∈ R 5 × 5 \mathcal{D} = \text{diag}\{\sum_{j\in N_1}a_{1j}, \sum_{j\in N_2}a_{2j}, \cdots, \sum_{j\in N_N}a_{Nj}\} \in \R^{5 \times 5} D=diag{ ∑j∈N1a1j,∑j∈N2a2j,⋯,∑j∈NNaNj}∈R5×5
Expand it for easy understanding :
ε ˙ 1 ( t ) = A ε 1 − K i B ε 1 + K i C ε 1 = [ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] [ p 1 x − p m x p 1 y − p m y p 1 z − p m z p 1 θ − p m θ p 1 ψ − p m ψ v 1 u − v m u v 1 v − v m v v 1 w − v m w v 1 q − v m q v 1 r − v m r ] − K i [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 1 + d 1 0 0 0 0 c 1 + d 1 0 0 0 0 0 c 2 + d 2 0 0 0 0 c 2 + d 2 0 0 0 0 0 c 3 + d 3 0 0 0 0 c 3 + d 3 0 0 0 0 0 c 4 + d 4 0 0 0 0 c 4 + d 4 0 0 0 0 0 c 5 + d 5 0 0 0 0 c 5 + d 5 ] [ p 1 x − p m x p 1 y − p m y p 1 z − p m z p 1 θ − p m θ p 1 ψ − p m ψ v 1 u − v m u v 1 v − v m v v 1 w − v m w v 1 q − v m q v 1 r − v m r ] + K i [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 12 a 13 a 14 a 15 0 a 12 a 13 a 14 a 15 a 21 0 a 23 a 24 a 25 a 21 0 a 23 a 24 a 25 a 31 a 32 0 a 34 a 35 a 31 a 32 0 a 34 a 35 a 41 a 42 a 43 0 a 45 a 41 a 42 a 43 0 a 45 a 51 a 52 a 53 a 54 0 a 51 a 52 a 53 a 54 0 ] [ p 1 x − p m x p 1 y − p m y p 1 z − p m z p 1 θ − p m θ p 1 ψ − p m ψ v 1 u − v m u v 1 v − v m v v 1 w − v m w v 1 q − v m q v 1 r − v m r ] \begin{aligned} \dot{\varepsilon}_1(t) &= A \varepsilon_1 - K_i B \varepsilon_1 + K_i C \varepsilon_1 \\ &= \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix} p^x_1 - p^x_m \\ p^y_1 - p^y_m \\ p^z_1 - p^z_m \\ p^\theta_1 - p^\theta_m \\ p^\psi_1 - p^\psi_m \\ \\ v^u_1 - v^u_m \\ v^v_1 - v^v_m \\ v^w_1 - v^w_m \\ v^q_1 - v^q_m \\ v^r_1 - v^r_m \\ \end{matrix}\right] \\ &-K_i \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \\ c_1+d_1 & 0 & 0 & 0 & 0 & c_1+d_1 & 0 & 0 & 0 & 0 \\ 0 & c_2+d_2 & 0 & 0 & 0 & 0 & c_2+d_2 & 0 & 0 & 0 \\ 0 & 0 & c_3+d_3 & 0 & 0 & 0 & 0 & c_3+d_3 & 0 & 0 \\ 0 & 0 & 0 & c_4+d_4 & 0 & 0 & 0 & 0 & c_4+d_4 & 0 \\ 0 & 0 & 0 & 0 & c_5+d_5 & 0 & 0 & 0 & 0 & c_5+d_5 \\ \end{matrix}\right] \left[\begin{matrix} p^x_1 - p^x_m \\ p^y_1 - p^y_m \\ p^z_1 - p^z_m \\ p^\theta_1 - p^\theta_m \\ p^\psi_1 - p^\psi_m \\ \\ v^u_1 - v^u_m \\ v^v_1 - v^v_m \\ v^w_1 - v^w_m \\ v^q_1 - v^q_m \\ v^r_1 - v^r_m \\ \end{matrix}\right] \\ &+K_i \left[\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \\ 0 & a_{12} & a_{13} & a_{14} & a_{15} & 0 & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & 0 & a_{23} & a_{24} & a_{25} & a_{21} & 0 & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & 0 & a_{34} & a_{35} & a_{31} & a_{32} & 0 & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & 0 & a_{45} & a_{41} & a_{42} & a_{43} & 0 & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & 0 & a_{51} & a_{52} & a_{53} & a_{54} & 0 \\ \end{matrix}\right] \left[\begin{matrix} p^x_1 - p^x_m \\ p^y_1 - p^y_m \\ p^z_1 - p^z_m \\ p^\theta_1 - p^\theta_m \\ p^\psi_1 - p^\psi_m \\ \\ v^u_1 - v^u_m \\ v^v_1 - v^v_m \\ v^w_1 - v^w_m \\ v^q_1 - v^q_m \\ v^r_1 - v^r_m \\ \end{matrix}\right] \end{aligned} ε˙1(t)=Aε1−KiBε1+KiCε1=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡0000000000000000000000000000000000000000000000000010000000000100000000001000000000010000000000100000⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1x−pmxp1y−pmyp1z−pmzp1θ−pmθp1ψ−pmψv1u−vmuv1v−vmvv1w−vmwv1q−vmqv1r−vmr⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤−Ki⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡00000c1+d10000000000c2+d20000000000c3+d30000000000c4+d40000000000c5+d500000c1+d10000000000c2+d20000000000c3+d30000000000c4+d40000000000c5+d5⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1x−pmxp1y−pmyp1z−pmzp1θ−pmθp1ψ−pmψv1u−vmuv1v−vmvv1w−vmwv1q−vmqv1r−vmr⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤+Ki⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡000000a21a31a41a5100000a120a32a42a5200000a13a230a43a5300000a14a24a340a5400000a15a25a35a450000000a21a31a41a5100000a120a32a42a5200000a13a230a43a5300000a14a24a340a5400000a15a25a35a450⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡p1x−pmxp1y−pmyp1z−pmzp1θ−pmθp1ψ−pmψv1u−vmuv1v−vmvv1w−vmwv1q−vmqv1r−vmr⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
x ˙ 1 ( t ) − x ˙ m ( t ) = A ε − B ε + C ε \dot{x}_1(t) - \dot{x}_m(t) = A \varepsilon - B \varepsilon + C \varepsilon x˙1(t)−x˙m(t)=Aε−Bε+Cε
Mother ship and many auv Run as a random switching topology . This paper gives the common probability space of all random variables ( Ω , F , P ) (\Omega,\mathcal{F}, \mathcal{P}) (Ω,F,P), Ω \Omega Ω Is the space for basic events , F \mathcal{F} F Is in Ω \Omega Ω On the potential σ σ σ- site , P \mathcal{P} P yes F \mathcal{F} F Probability measure on .
In this paper, we consider using consistency algorithm (3.3) And Markov switching interconnection topology
ε ˙ ( t ) = ( I n ⊗ A ) ε ( t ) − B ( ρ t ) ⊗ K ( ρ t ) ε ( t − τ 1 ) + C ( ρ t ) ⊗ K ( ρ t ) ε ( t − μ ) (3.4) \dot{\varepsilon}(t) = (I_n \otimes A) ~\varepsilon(t) - \red{B(\rho_t)} \otimes \red{K(\rho_t)} ~\varepsilon(t-\tau_1) + \red{C(\rho_t)} \otimes \red{K(\rho_t)} ~\varepsilon(t-\mu) \tag{3.4} ε˙(t)=(In⊗A) ε(t)−B(ρt)⊗K(ρt) ε(t−τ1)+C(ρt)⊗K(ρt) ε(t−μ)(3.4)
System (3.4) Is a multiple with Markov switching topology and time delay AUVs Restore system consistency control , It reflects the mother ship and AUVs Between or AUVs Random communication process between . Communication is described by Markov random process , ρ t \rho_t ρt Is defined as a Markov process , In state space M = { 1 , 2 , ⋅ , M } \mathbb{M} = \{1, 2, \cdot , \mathbf{M} \} M={ 1,2,⋅,M} The inner value is . matrix B ( ρ t ) B(\rho_t) B(ρt) and C ( ρ t ) C(\rho_t) C(ρt) Random change from one mode to another by Markov jump process , The control gain changes from one mode to another in a Markov switching topology . Protocol gain K ( ρ t ) K(\rho_t) K(ρt) To ensure the consensus of the recovery system .
B. CONVERGENCE ANALYSIS
IV. NUMERICAL EXAMPLES

This is using the topology diagram (a) The simulation results
Through the speed state , It can be concluded that there is something wrong with the result in the original text 
This is the result of modifying the topology
I feel that there is not only a problem with the result in the original text , And there are problems with the communication topology 
边栏推荐
- Method of applying for code signing certificate by enterprise
- Myrpc version 2
- FortiGate firewall modifies the default timeout of a session
- Detailed explanation of data link layer
- [fpga] implementation of IIC read / write EEPROM
- Enter the date format string as the production date of the commodity, and enter the shelf life (days); Calculate the number of days until today before the expiration date of the product. 1. Change the
- Redis implements SMS login function (II) redis implements login function
- JS static method
- Input / output and interrupt technology -- microcomputer Chapter 6 learning notes
- Internship: interface case implementation
猜你喜欢

JS inheritance

Redis implements SMS login function (II) redis implements login function

FortiGate configures multiple server IPS as link monitor monitoring objects on the same interface

Junior students summarize JS advanced interview questions

Interview topic of MySQL

Geotrustov wildcard

Redis implements SMS login function (I) traditional session login

Learning about signals

Input / output and interrupt technology -- microcomputer Chapter 6 learning notes

SSL universal domain name certificate
随机推荐
IO stream, buffer stream, automatic resource management
2021-11-04
Cheap SSL certificate abroad
Serializable and Deserialize
SSL universal domain name certificate
Geotrustov wildcard
7-3 single source shortest circuit for strange play upgrade
If you encounter problems when using spark for the first time, please ask for help
JS static method
OneNote software
Paging query, using jdbc-- paging query
How to apply for SSL certificate from the manufacturer
Myrpc version 3
基于servlet+jsp+mysql实现的工资管理系统【源码+数据库】
Servlet lifecycle
The same node code will cause duplicate data
Enlist soldiers and generals, draw small programs, multi-threaded display time
Interprocess communication
Detailed explanation of data link layer
MySQL DDL change