当前位置:网站首页>Pytorch convolution operation
Pytorch convolution operation
2022-07-01 04:45:00 【booze-J】
article
pytorch Convolution operation official document
Here we use nn.conv2d To explain the convolution operation .
What is convolution ?
The convolution kernel moves on the input image , Then multiply and sum the values on the convolution kernel and the corresponding position on the input image .Stride=1 To control the moving step of convolution kernel .
Convolution operation example code :
import torch.nn.functional as F
import torch
# The input image (5X5)
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
# Convolution kernel (3X3)
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
# input: torch.Size([5, 5])
print("input:\n",input.shape)
# kernel:torch.Size([3, 3])
print("kernel:\n",kernel.shape)
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
# input:torch.Size([1, 1, 5, 5])
print("input:\n",input.shape)
# kernel:torch.Size([1, 1, 3, 3])
print("kernel:\n",kernel.shape)
# Convolution operation Observe stride Influence on convolution results
output = F.conv2d(input,kernel,stride=1)
print('output\n',output)
output2 = F.conv2d(input,kernel,stride=2)
print('output2\n',output2)
# Perform volume and operation Expand and fill the boundary of the input image Observe padding Influence on convolution results
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print("output\n",output3)
Part of the code explanation :
1.reshape The role of
# reshape front
# input: torch.Size([5, 5]) kernel:torch.Size([3, 3])
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
# reshape after
# input:torch.Size([1, 1, 5, 5]) kernel:torch.Size([1, 1, 3, 3])
Why do I need to be right input and kernel Conduct reshape This operation ?
Because use torch.nn.functional.conv2d The input parameters are limited , You can see conv2d Requirements for input parameters , requirement input The input is (minibatch,in_channels,iH,iW), among in_channels Indicates the number of channels ,iH Indicates the height of the input image ,iW Indicates the width of the input image .weigt The input is kernel( Convolution kernel ), You can see that it's right weight The parameter requirements of are similar to input, among outchannels Indicates the number of output channels ,in_channels Indicates the number of input channels (groups Default equal to 1),kH Represents the height of the convolution kernel ,kW Represents the width of the convolution kernel . So you need to input and kernel Conduct reshape operation .
2.stride Parameters
# Convolution operation Observe stride Influence on convolution results
output = F.conv2d(input,kernel,stride=1)
print('output\n',output)
output2 = F.conv2d(input,kernel,stride=2)
print('output2\n',output2)
Running results :
You can see Official documents Yes Stride The explanation of :
- stride – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
When stride What you enter is a number , Then this number is the horizontal and vertical moving steps of the convolution kernel , When stride When you enter a tuple , The steps of the convolution kernel moving horizontally and vertically can be set respectively .
3.padding Parameters
# Perform volume and operation Expand and fill the boundary of the input image Observe padding Influence on convolution results
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print("output\n",output3)
In the above code padding The function of parameters is equivalent to , Expand the horizontal and vertical boundaries of the input image 1 Length and fill 0, Then perform convolution operation .
You can see Official documents Yes Padding The explanation of :
- padding – implicit paddings on both sides of the input. Can be a string {‘valid’, ‘same’}, single number or a tuple (padH, padW). Default: 0 padding=‘valid’ is the same as no padding. padding=‘same’ pads the input so the output has the same shape as the input. However, this mode doesn’t support any stride values other than 1.
When padding What you enter is a number , Then this number is the horizontal and vertical boundary expansion filling of the image ( The default filling value is 0) The length of , When padding When you enter a tuple , You can set the length of the horizontal and vertical boundaries of the image respectively .
边栏推荐
- LeetCode_35(搜索插入位置)
- 分布式全局唯一ID解决方案详解
- Strategic suggestions and future development trend of global and Chinese vibration isolator market investment report 2022 Edition
- STM32扩展板 数码管显示
- Shell之一键自动部署Redis任意版本
- C language games (I) -- guessing games
- JS rotation chart
- STM32扩展版 按键扫描
- Quelques outils dont les chiens scientifiques pourraient avoir besoin
- STM32扩展板 温度传感器和温湿度传感器的使用
猜你喜欢

Basic usage, principle and details of session

数据加载及预处理

STM32扩展版 按键扫描

Dataloader的使用

VIM简易使用教程

LM小型可编程控制器软件(基于CoDeSys)笔记十九:报错does not match the profile of the target

Research on medical knowledge atlas question answering system (I)

Applications and features of VR online exhibition

神经网络-卷积层

Strategic suggestions and future development trend of global and Chinese vibration isolator market investment report 2022 Edition
随机推荐
Basic exercise of test questions hexadecimal to decimal
VIM easy to use tutorial
2022 question bank and answers for safety production management personnel of hazardous chemical production units
2022 t elevator repair question bank and simulation test
2022年上海市安全员C证考试题模拟考试题库及答案
About the transmission pipeline of stage in spark
【FTP】FTP常用命令,持续更新中……
洗个冷水澡吧
分布式锁的实现
RuntimeError: “max_pool2d“ not implemented for ‘Long‘
Some tools that research dogs may need
分布式事务-解决方案
RuntimeError: mean(): input dtype should be either floating point or complex dtypes.Got Long instead
2022 Shanghai safety officer C certificate examination question simulation examination question bank and answers
How to view the changes and opportunities in the construction of smart cities?
Leecode records the number of good segmentation of 1525 strings
2022 gas examination question bank and online simulation examination
C -- array
[FTP] the solution to "227 entering passive mode" during FTP connection
[2020 overview] overview of link prediction based on knowledge map embedding