当前位置:网站首页>Pytorch convolution operation
Pytorch convolution operation
2022-07-01 04:45:00 【booze-J】
article
pytorch Convolution operation official document
Here we use nn.conv2d To explain the convolution operation .
What is convolution ?
The convolution kernel moves on the input image , Then multiply and sum the values on the convolution kernel and the corresponding position on the input image .Stride=1 To control the moving step of convolution kernel .
Convolution operation example code :
import torch.nn.functional as F
import torch
# The input image (5X5)
input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
# Convolution kernel (3X3)
kernel = torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
# input: torch.Size([5, 5])
print("input:\n",input.shape)
# kernel:torch.Size([3, 3])
print("kernel:\n",kernel.shape)
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
# input:torch.Size([1, 1, 5, 5])
print("input:\n",input.shape)
# kernel:torch.Size([1, 1, 3, 3])
print("kernel:\n",kernel.shape)
# Convolution operation Observe stride Influence on convolution results
output = F.conv2d(input,kernel,stride=1)
print('output\n',output)
output2 = F.conv2d(input,kernel,stride=2)
print('output2\n',output2)
# Perform volume and operation Expand and fill the boundary of the input image Observe padding Influence on convolution results
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print("output\n",output3)
Part of the code explanation :
1.reshape The role of
# reshape front
# input: torch.Size([5, 5]) kernel:torch.Size([3, 3])
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
# reshape after
# input:torch.Size([1, 1, 5, 5]) kernel:torch.Size([1, 1, 3, 3])
Why do I need to be right input and kernel Conduct reshape This operation ?
Because use torch.nn.functional.conv2d The input parameters are limited , You can see conv2d Requirements for input parameters , requirement input The input is (minibatch,in_channels,iH,iW), among in_channels Indicates the number of channels ,iH Indicates the height of the input image ,iW Indicates the width of the input image .weigt The input is kernel( Convolution kernel ), You can see that it's right weight The parameter requirements of are similar to input, among outchannels Indicates the number of output channels ,in_channels Indicates the number of input channels (groups Default equal to 1),kH Represents the height of the convolution kernel ,kW Represents the width of the convolution kernel . So you need to input and kernel Conduct reshape operation .
2.stride Parameters
# Convolution operation Observe stride Influence on convolution results
output = F.conv2d(input,kernel,stride=1)
print('output\n',output)
output2 = F.conv2d(input,kernel,stride=2)
print('output2\n',output2)
Running results :
You can see Official documents Yes Stride The explanation of :
- stride – the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1
When stride What you enter is a number , Then this number is the horizontal and vertical moving steps of the convolution kernel , When stride When you enter a tuple , The steps of the convolution kernel moving horizontally and vertically can be set respectively .
3.padding Parameters
# Perform volume and operation Expand and fill the boundary of the input image Observe padding Influence on convolution results
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print("output\n",output3)
In the above code padding The function of parameters is equivalent to , Expand the horizontal and vertical boundaries of the input image 1 Length and fill 0, Then perform convolution operation .
You can see Official documents Yes Padding The explanation of :
- padding – implicit paddings on both sides of the input. Can be a string {‘valid’, ‘same’}, single number or a tuple (padH, padW). Default: 0 padding=‘valid’ is the same as no padding. padding=‘same’ pads the input so the output has the same shape as the input. However, this mode doesn’t support any stride values other than 1.
When padding What you enter is a number , Then this number is the horizontal and vertical boundary expansion filling of the image ( The default filling value is 0) The length of , When padding When you enter a tuple , You can set the length of the horizontal and vertical boundaries of the image respectively .
边栏推荐
- pytorch 卷积操作
- 2022 question bank and answers for safety production management personnel of hazardous chemical production units
- 【硬十宝典】——1.【基础知识】电源的分类
- 2022 t elevator repair question bank and simulation test
- Codeforces Round #771 (Div. 2) ABCD|E
- How do I sort a list of strings in dart- How can I sort a list of strings in Dart?
- 细数软件研发效能的七宗罪
- STM32 extended key scan
- 2022 gas examination question bank and online simulation examination
- STM32扩展板 数码管显示
猜你喜欢
随机推荐
Execution failed for task ‘:app:processDebugResources‘. > A failure occurred while executing com. and
Common interview questions ①
LM small programmable controller software (based on CoDeSys) note 20: PLC controls stepping motor through driver
Shell之Unix运维常用命令
The design points of voice dialogue system and the importance of multi round dialogue
RuntimeError: “max_pool2d“ not implemented for ‘Long‘
LM small programmable controller software (based on CoDeSys) note 19: errors do not match the profile of the target
2022 t elevator repair new version test questions and t elevator repair simulation test question bank
Simple implementation of slf4j
分布式架构系统拆分原则、需求、微服务拆分步骤
The longest increasing subsequence and its optimal solution, total animal weight problem
分布式锁的实现
Difficulties in the development of knowledge map & the importance of building industry knowledge map
Common UNIX Operation and maintenance commands of shell
Pytorch(一) —— 基本语法
【硬十宝典目录】——转载自“硬件十万个为什么”(持续更新中~~)
TCP server communication flow
分布式数据库数据一致性的原理、与技术实现方案
技术分享| 融合调度中的广播功能设计
2022年T电梯修理题库及模拟考试







![AssertionError assert I.ndim == 4 and I.shape[1] == 3](/img/b1/0109bb0f893eb4c8915df36c100907.png)

