当前位置:网站首页>Electromagnetic field learning notes - vector analysis and field theory foundation
Electromagnetic field learning notes - vector analysis and field theory foundation
2022-07-27 19:03:00 【Miracle Fan】
Basis of vector analysis and field theory
List of articles
1. Basis of vector analysis
1.1 Dot product of vectors
A ∗ B = A x B x + A y B y + A z B z = A B cos θ \mathbf{A*B}=A_xB_x+A_yB_y+A_zB_z=AB\cos\theta A∗B=AxBx+AyBy+AzBz=ABcosθ
1.2 The cross product of vectors
A × B = ∣ e x e y e z A x A y A z B x B y B z ∣ = A B sin θ e n \mathbf{A\times B}= \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ A_x & A_y & A_z\\ B_x& B_y &B_z \end{vmatrix} =AB\sin\theta \mathbf{e}_n A×B=∣∣∣∣∣∣exAxBxeyAyByezAzBz∣∣∣∣∣∣=ABsinθen
e n \mathbf{e}_n en Is and vector A,B Are vertical unit vectors , The three meet the right-hand spiral relationship .
2. Isolines and vector lines of the field
2.1 Basic concepts
Scalar and vector fields :
u ( M ) = u ( x , y , z ) A ( M ) = A ( x , y , z ) = A x ( x , y , z ) e x + A x ( x , y , z ) e x + A x ( x , y , z ) e x u(M)=u(x,y,z) \\ \mathbf{A}(M)=\mathbf{A}(x,y,z)=A_x(x,y,z)\mathbf{e}_x+A_x(x,y,z)\mathbf{e}_x+A_x(x,y,z)\mathbf{e}_x u(M)=u(x,y,z)A(M)=A(x,y,z)=Ax(x,y,z)ex+Ax(x,y,z)ex+Ax(x,y,z)ex
( α , β , γ \alpha,\beta,\gamma α,β,γ Respectively A The positive included angle with the three coordinate axes )
A x = A cos α A y = A cos β A x = A cos γ A_x=A\cos\alpha \quad A_y=A\cos\beta \quad A_x=A\cos\gamma \quad Ax=AcosαAy=AcosβAx=Acosγ
2.2 Scalar field isosurface
Electromagnetic field Potential field It's just one. Scalar fields . The equivalent surface composed of points with the same potential is the equipotential surface .
u ( x , y , z ) = C u(x,y,z)=C u(x,y,z)=C
2.3 Vector line of vector field
d l = d x e x + d y e y + d z e z \mathrm{d}\mathbf{l}=\mathrm{d}x\mathbf{e}_x +\mathrm{d}y\mathbf{e}_y+\mathrm{d}z\mathbf{e}_z dl=dxex+dyey+dzez
Satisfy d x A x = d y A y = d z A z \frac{dx}{A_x}=\frac{dy}{A_y}=\frac{dz}{A_z} Axdx=Aydy=Azdz The differential equation satisfied by the vector line , The solution is a family of vector lines .
3. Scalar field directional derivatives and gradients
Scalar fields : u ( x , y , z ) = C u(x,y,z)=C u(x,y,z)=C
Directional derivative : Scalar fields u stay l \mathbf{l} l On the situation :
∂ u ∂ l = ∂ u ∂ x cos α + ∂ u ∂ y cos β + ∂ u ∂ z cos γ = ( ∂ u ∂ x e x + ∂ u ∂ y e y + ∂ u ∂ z e z ) ∗ ( c o s α e x + c o s β e y + c o s γ e z ) \frac{\partial u}{\partial l} =\frac{\partial u}{\partial x}\cos\alpha +\frac{\partial u}{\partial y}\cos\beta+\frac{\partial u}{\partial z}\cos\gamma=(\frac{\partial u}{\partial x}\mathbf{e_x} +\frac{\partial u}{\partial y}\mathbf{e_y} +\frac{\partial u}{\partial z}\mathbf{e_z})* (cos\alpha\mathbf{e_x} +cos\beta\mathbf{e_y}+cos\gamma\mathbf{e_z}) ∂l∂u=∂x∂ucosα+∂y∂ucosβ+∂z∂ucosγ=(∂x∂uex+∂y∂uey+∂z∂uez)∗(cosαex+cosβey+cosγez)
c o s α e x + c o s β e y + c o s γ e z cos\alpha\mathbf{e_x} +cos\beta\mathbf{e_y}+cos\gamma\mathbf{e_z} cosαex+cosβey+cosγez by e l \mathbf{e_l} el by l Direction unit vector
gradient :u The rate of change in all directions , That is, the fastest changing direction ,grad u = ∂ u ∂ x e x + ∂ u ∂ y e y + ∂ u ∂ z e z \frac{\partial u}{\partial x}\mathbf{e_x} +\frac{\partial u}{\partial y}\mathbf{e_y} +\frac{\partial u}{\partial z}\mathbf{e_z} ∂x∂uex+∂y∂uey+∂z∂uez
Gradient along e n \mathbf{e_n} en:
∂ u ∂ n = ∣ g r a d u ∣ ∗ e n ∗ e n = ∣ g r a d u ∣ \frac{\partial u}{\partial n} =|grad u|*\mathbf{e_n}*\mathbf{e_n}=|grad u| ∂n∂u=∣gradu∣∗en∗en=∣gradu∣
Gradient along e l \mathbf{e_l} el:
∂ u ∂ l = ∣ g r a d u ∣ ∗ e n ∗ e l = ∣ g r a d u ∣ cos θ \frac{\partial u}{\partial l} =|grad u|*\mathbf{e_n}*\mathbf{e_l}=|grad u|\cos\theta ∂l∂u=∣gradu∣∗en∗el=∣gradu∣cosθ
4. Flux and divergence of vector field
4.1 Flux of vector field
vector A ⃗ ( M ) \vec{A}(M) A(M) The flux through the surface element is defined as :
d Φ = A n d S = A ⃗ ⋅ e n ⃗ d S = A ⃗ d S ⃗ Φ = ∫ S A ⃗ d S ⃗ S ⃗ Is a directed surface S d\Phi=A_ndS=\vec{A}\cdot\vec{e_n}dS=\vec{A}d\vec{S} \\ \Phi=\int_S\vec{A}d\vec{S} \quad \vec{S}\text{ Is a directed surface S} dΦ=AndS=A⋅endS=AdSΦ=∫SAdSS Is a directed surface S
4.2 Divergence of vector field
div A ⃗ = lim Δ V → 0 ∮ s A ⃗ ⋅ d S ⃗ Δ V ⇔ div A ⃗ = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z \begin{aligned} \operatorname{div} \vec{A} &=\lim _{\Delta V \rightarrow 0} \frac{\oint_{s} \vec{A} \cdot d \vec{S}}{\Delta V} \\ \Leftrightarrow \operatorname{div} \vec{A} &=\frac{\partial A x}{\partial x}+\frac{\partial A y}{\partial y}+\frac{\partial A z}{\partial z} \end{aligned} divA⇔divA=ΔV→0limΔV∮sA⋅dS=∂x∂Ax+∂y∂Ay+∂z∂Az
4.3 Gauss divergence theorem
Flux emitted by any closed surface :
∮ S A ⃗ ⋅ d S ⃗ = ∫ V div A ⃗ d V ∮ S ( A x d y d z + A y d x d z + A z d x d y ) = ∫ V ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) d x d y d z \begin{array}{l} \oint_{S} \vec{A} \cdot d \vec{S}=\int_{V} \operatorname{div} \vec{A} d V\\ \oint_{S}\left(A_{x} d y d z+A_{y} d x d z+A_{z} d x d y\right)=\int_{V}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right) d x d y d z \end{array} ∮SA⋅dS=∫VdivAdV∮S(Axdydz+Aydxdz+Azdxdy)=∫V(∂x∂Ax+∂y∂Ay+∂z∂Az)dxdydz
1.5 Circulation and curl of vector field
1.5.1 Vector field circulation
Γ = ∮ l A t d L = ∮ l A cos θ d l = ∮ ⋅ A ⃗ ⋅ d L ⃗ \Gamma=\oint_{l} A_{t} d L=\oint_{l} A \cos \theta d l=\oint \cdot \vec{A} \cdot d \vec{L} Γ=∮lAtdL=∮lAcosθdl=∮⋅A⋅dL
1.5.2 Vector field curl
rot A ⃗ = R ⃗ ⇒ rot A ⃗ = ( ∂ A z ∂ y − ∂ A y ∂ z ) e ⃗ x + ( ∂ A y ∂ z − ∂ A z ∂ x ) e y → + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z → = ∣ e x → e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ \begin{aligned} \operatorname{rot} \vec{A}=\vec{R} \\ \Rightarrow & \operatorname{rot} \vec{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \vec{e}_{x}+\left(\frac{\partial A_{y}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \overrightarrow{e_{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A x}{\partial y}\right) \overrightarrow{e_{z}} \\ &=\left|\begin{array}{lll} \overrightarrow{e_{x}} & \vec{e}_y & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{array}\right| \end{aligned} rotA=R⇒rotA=(∂y∂Az−∂z∂Ay)ex+(∂z∂Ay−∂x∂Az)ey+(∂x∂Ay−∂y∂Ax)ez=∣∣∣∣∣∣ex∂x∂Axey∂y∂Ayez∂z∂Az∣∣∣∣∣∣
1.5.3 Stokes The formula
Consider the circulation along any closed curve
∮ l A ⃗ ⋅ d l ⃗ = ∫ S ( rot A ⃗ ) ⋅ d S ⃗ \oint_{l} \vec{A} \cdot d \vec{l}=\int_{S}(\operatorname{rot} \vec{A}) \cdot d \vec{S} ∮lA⋅dl=∫S(rotA)⋅dS
1.6 Common formula
hamilton operator ∇ \nabla ∇ And Laplacian ∇ 2 \nabla^2 ∇2
∇ = ∂ ∂ x e ⃗ x + ∂ ∂ y e ⃗ y + ∂ ∂ z e ⃗ z grad u = ∇ u div A ⃗ = ∇ ⋅ A ⃗ rot A ⃗ = ∇ × A ⃗ ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\color{Red} \nabla=\frac{\partial}{\partial x} \vec{e}_{x}+\frac{\partial}{\partial y} \vec{e}_{y}+\frac{\partial}{\partial z} \vec{e}_{z}} \\ \operatorname{grad} u=\nabla u \\ \operatorname{div} \vec{A}=\nabla \cdot \vec{A} \\ \operatorname{rot} \vec{A}=\nabla \times \vec{A} \\ {\color{Red} \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}} ∇=∂x∂ex+∂y∂ey+∂z∂ezgradu=∇udivA=∇⋅ArotA=∇×A∇2=∂x2∂2+∂y2∂2+∂z2∂2
边栏推荐
- Typescript installation
- Unity学习笔记(实现传送带)
- Intelligent insomnia therapeutic instrument product dlt8p68sa Jericho
- Latex使用--subfigure竖排图形
- express
- Electric heating neck pillow chip-dltap703sc
- 收下这份实操案例,还怕不会用Jmeter接口测试工具
- WinForm remove the close button in the upper right corner
- npm 基本使用
- 自控原理学习笔记-系统稳定性分析(2)-环路分析及Nyquist-Bode判据
猜你喜欢

地图找房的实例

MySQL 04 高级查询(二)

`this.$emit` 子组件给父组件传递多个参数
![[NPM] the](/img/ae/efccefae0323a1f6a425523e01d2ac.png)
[NPM] the "NPM" item cannot be recognized as the name of cmdlets, functions, script files or runnable programs. Please check the spelling of the name. If the path is included, make sure the path is co

Leetcode brushes questions the next day

Unity-显示Kinect深度数据

MySQL 01 关系型数据库设计

Interviewer: what do you think is your biggest weakness?

Product recommendation and classified product recommendation

MySQL 06 transaction, view, index, backup and recovery
随机推荐
Imitation thread deduction
v-if,v-else,v-for
normal distribution, lognormal distribution,正态随机数的生成
Latex使用-控制表格或者图形的显示位置
JDBC MySQL 01 JDBC operation MySQL (add, delete, modify and query)
Aircraft battle with enemy aircraft
ridis命令笔记
连续时间系统的性能分析(2)-二阶系统性能改善方式PID,PR
Low noise anion fan touch IC
Extension of ES6 value
JS to realize simple form verification and select all functions
Collection of software design suggestions of "high cohesion and low coupling"
MongoDB
微机原理学习笔记-常见寻址方式
MySQL 06 transaction, view, index, backup and recovery
Hash、Set、List、Zset、BitMap、Scan
JDBC-MySql 01 JDBC操作MySql(增删改查)
百度地图技术概述,及基本API与WebApi的应用开发
`this.$emit` 子组件给父组件传递多个参数
LeetCode 刷题 第二天