当前位置:网站首页>Electromagnetic field learning notes - vector analysis and field theory foundation
Electromagnetic field learning notes - vector analysis and field theory foundation
2022-07-27 19:03:00 【Miracle Fan】
Basis of vector analysis and field theory
List of articles
1. Basis of vector analysis
1.1 Dot product of vectors
A ∗ B = A x B x + A y B y + A z B z = A B cos θ \mathbf{A*B}=A_xB_x+A_yB_y+A_zB_z=AB\cos\theta A∗B=AxBx+AyBy+AzBz=ABcosθ
1.2 The cross product of vectors
A × B = ∣ e x e y e z A x A y A z B x B y B z ∣ = A B sin θ e n \mathbf{A\times B}= \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ A_x & A_y & A_z\\ B_x& B_y &B_z \end{vmatrix} =AB\sin\theta \mathbf{e}_n A×B=∣∣∣∣∣∣exAxBxeyAyByezAzBz∣∣∣∣∣∣=ABsinθen
e n \mathbf{e}_n en Is and vector A,B Are vertical unit vectors , The three meet the right-hand spiral relationship .
2. Isolines and vector lines of the field
2.1 Basic concepts
Scalar and vector fields :
u ( M ) = u ( x , y , z ) A ( M ) = A ( x , y , z ) = A x ( x , y , z ) e x + A x ( x , y , z ) e x + A x ( x , y , z ) e x u(M)=u(x,y,z) \\ \mathbf{A}(M)=\mathbf{A}(x,y,z)=A_x(x,y,z)\mathbf{e}_x+A_x(x,y,z)\mathbf{e}_x+A_x(x,y,z)\mathbf{e}_x u(M)=u(x,y,z)A(M)=A(x,y,z)=Ax(x,y,z)ex+Ax(x,y,z)ex+Ax(x,y,z)ex
( α , β , γ \alpha,\beta,\gamma α,β,γ Respectively A The positive included angle with the three coordinate axes )
A x = A cos α A y = A cos β A x = A cos γ A_x=A\cos\alpha \quad A_y=A\cos\beta \quad A_x=A\cos\gamma \quad Ax=AcosαAy=AcosβAx=Acosγ
2.2 Scalar field isosurface
Electromagnetic field Potential field It's just one. Scalar fields . The equivalent surface composed of points with the same potential is the equipotential surface .
u ( x , y , z ) = C u(x,y,z)=C u(x,y,z)=C
2.3 Vector line of vector field
d l = d x e x + d y e y + d z e z \mathrm{d}\mathbf{l}=\mathrm{d}x\mathbf{e}_x +\mathrm{d}y\mathbf{e}_y+\mathrm{d}z\mathbf{e}_z dl=dxex+dyey+dzez
Satisfy d x A x = d y A y = d z A z \frac{dx}{A_x}=\frac{dy}{A_y}=\frac{dz}{A_z} Axdx=Aydy=Azdz The differential equation satisfied by the vector line , The solution is a family of vector lines .
3. Scalar field directional derivatives and gradients
Scalar fields : u ( x , y , z ) = C u(x,y,z)=C u(x,y,z)=C
Directional derivative : Scalar fields u stay l \mathbf{l} l On the situation :
∂ u ∂ l = ∂ u ∂ x cos α + ∂ u ∂ y cos β + ∂ u ∂ z cos γ = ( ∂ u ∂ x e x + ∂ u ∂ y e y + ∂ u ∂ z e z ) ∗ ( c o s α e x + c o s β e y + c o s γ e z ) \frac{\partial u}{\partial l} =\frac{\partial u}{\partial x}\cos\alpha +\frac{\partial u}{\partial y}\cos\beta+\frac{\partial u}{\partial z}\cos\gamma=(\frac{\partial u}{\partial x}\mathbf{e_x} +\frac{\partial u}{\partial y}\mathbf{e_y} +\frac{\partial u}{\partial z}\mathbf{e_z})* (cos\alpha\mathbf{e_x} +cos\beta\mathbf{e_y}+cos\gamma\mathbf{e_z}) ∂l∂u=∂x∂ucosα+∂y∂ucosβ+∂z∂ucosγ=(∂x∂uex+∂y∂uey+∂z∂uez)∗(cosαex+cosβey+cosγez)
c o s α e x + c o s β e y + c o s γ e z cos\alpha\mathbf{e_x} +cos\beta\mathbf{e_y}+cos\gamma\mathbf{e_z} cosαex+cosβey+cosγez by e l \mathbf{e_l} el by l Direction unit vector
gradient :u The rate of change in all directions , That is, the fastest changing direction ,grad u = ∂ u ∂ x e x + ∂ u ∂ y e y + ∂ u ∂ z e z \frac{\partial u}{\partial x}\mathbf{e_x} +\frac{\partial u}{\partial y}\mathbf{e_y} +\frac{\partial u}{\partial z}\mathbf{e_z} ∂x∂uex+∂y∂uey+∂z∂uez
Gradient along e n \mathbf{e_n} en:
∂ u ∂ n = ∣ g r a d u ∣ ∗ e n ∗ e n = ∣ g r a d u ∣ \frac{\partial u}{\partial n} =|grad u|*\mathbf{e_n}*\mathbf{e_n}=|grad u| ∂n∂u=∣gradu∣∗en∗en=∣gradu∣
Gradient along e l \mathbf{e_l} el:
∂ u ∂ l = ∣ g r a d u ∣ ∗ e n ∗ e l = ∣ g r a d u ∣ cos θ \frac{\partial u}{\partial l} =|grad u|*\mathbf{e_n}*\mathbf{e_l}=|grad u|\cos\theta ∂l∂u=∣gradu∣∗en∗el=∣gradu∣cosθ
4. Flux and divergence of vector field
4.1 Flux of vector field
vector A ⃗ ( M ) \vec{A}(M) A(M) The flux through the surface element is defined as :
d Φ = A n d S = A ⃗ ⋅ e n ⃗ d S = A ⃗ d S ⃗ Φ = ∫ S A ⃗ d S ⃗ S ⃗ Is a directed surface S d\Phi=A_ndS=\vec{A}\cdot\vec{e_n}dS=\vec{A}d\vec{S} \\ \Phi=\int_S\vec{A}d\vec{S} \quad \vec{S}\text{ Is a directed surface S} dΦ=AndS=A⋅endS=AdSΦ=∫SAdSS Is a directed surface S
4.2 Divergence of vector field
div A ⃗ = lim Δ V → 0 ∮ s A ⃗ ⋅ d S ⃗ Δ V ⇔ div A ⃗ = ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z \begin{aligned} \operatorname{div} \vec{A} &=\lim _{\Delta V \rightarrow 0} \frac{\oint_{s} \vec{A} \cdot d \vec{S}}{\Delta V} \\ \Leftrightarrow \operatorname{div} \vec{A} &=\frac{\partial A x}{\partial x}+\frac{\partial A y}{\partial y}+\frac{\partial A z}{\partial z} \end{aligned} divA⇔divA=ΔV→0limΔV∮sA⋅dS=∂x∂Ax+∂y∂Ay+∂z∂Az
4.3 Gauss divergence theorem
Flux emitted by any closed surface :
∮ S A ⃗ ⋅ d S ⃗ = ∫ V div A ⃗ d V ∮ S ( A x d y d z + A y d x d z + A z d x d y ) = ∫ V ( ∂ A x ∂ x + ∂ A y ∂ y + ∂ A z ∂ z ) d x d y d z \begin{array}{l} \oint_{S} \vec{A} \cdot d \vec{S}=\int_{V} \operatorname{div} \vec{A} d V\\ \oint_{S}\left(A_{x} d y d z+A_{y} d x d z+A_{z} d x d y\right)=\int_{V}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right) d x d y d z \end{array} ∮SA⋅dS=∫VdivAdV∮S(Axdydz+Aydxdz+Azdxdy)=∫V(∂x∂Ax+∂y∂Ay+∂z∂Az)dxdydz
1.5 Circulation and curl of vector field
1.5.1 Vector field circulation
Γ = ∮ l A t d L = ∮ l A cos θ d l = ∮ ⋅ A ⃗ ⋅ d L ⃗ \Gamma=\oint_{l} A_{t} d L=\oint_{l} A \cos \theta d l=\oint \cdot \vec{A} \cdot d \vec{L} Γ=∮lAtdL=∮lAcosθdl=∮⋅A⋅dL
1.5.2 Vector field curl
rot A ⃗ = R ⃗ ⇒ rot A ⃗ = ( ∂ A z ∂ y − ∂ A y ∂ z ) e ⃗ x + ( ∂ A y ∂ z − ∂ A z ∂ x ) e y → + ( ∂ A y ∂ x − ∂ A x ∂ y ) e z → = ∣ e x → e ⃗ y e ⃗ z ∂ ∂ x ∂ ∂ y ∂ ∂ z A x A y A z ∣ \begin{aligned} \operatorname{rot} \vec{A}=\vec{R} \\ \Rightarrow & \operatorname{rot} \vec{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \vec{e}_{x}+\left(\frac{\partial A_{y}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \overrightarrow{e_{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A x}{\partial y}\right) \overrightarrow{e_{z}} \\ &=\left|\begin{array}{lll} \overrightarrow{e_{x}} & \vec{e}_y & \vec{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{array}\right| \end{aligned} rotA=R⇒rotA=(∂y∂Az−∂z∂Ay)ex+(∂z∂Ay−∂x∂Az)ey+(∂x∂Ay−∂y∂Ax)ez=∣∣∣∣∣∣ex∂x∂Axey∂y∂Ayez∂z∂Az∣∣∣∣∣∣
1.5.3 Stokes The formula
Consider the circulation along any closed curve
∮ l A ⃗ ⋅ d l ⃗ = ∫ S ( rot A ⃗ ) ⋅ d S ⃗ \oint_{l} \vec{A} \cdot d \vec{l}=\int_{S}(\operatorname{rot} \vec{A}) \cdot d \vec{S} ∮lA⋅dl=∫S(rotA)⋅dS
1.6 Common formula
hamilton operator ∇ \nabla ∇ And Laplacian ∇ 2 \nabla^2 ∇2
∇ = ∂ ∂ x e ⃗ x + ∂ ∂ y e ⃗ y + ∂ ∂ z e ⃗ z grad u = ∇ u div A ⃗ = ∇ ⋅ A ⃗ rot A ⃗ = ∇ × A ⃗ ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\color{Red} \nabla=\frac{\partial}{\partial x} \vec{e}_{x}+\frac{\partial}{\partial y} \vec{e}_{y}+\frac{\partial}{\partial z} \vec{e}_{z}} \\ \operatorname{grad} u=\nabla u \\ \operatorname{div} \vec{A}=\nabla \cdot \vec{A} \\ \operatorname{rot} \vec{A}=\nabla \times \vec{A} \\ {\color{Red} \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}} ∇=∂x∂ex+∂y∂ey+∂z∂ezgradu=∇udivA=∇⋅ArotA=∇×A∇2=∂x2∂2+∂y2∂2+∂z2∂2
边栏推荐
猜你喜欢
随机推荐
Interceptor拦截器
百度地图技术概述,及基本API与WebApi的应用开发
WinForm screenshot save C code
Bathroom with demister vanity mirror touch chip-dlt8t10s
Unity学习笔记(实现传送带)
ES6数值的扩展
Collection of software design suggestions of "high cohesion and low coupling"
Kinect for Unity3D——BackgroundRemovalDemo学习
SQL server stored procedures multi angle introduction suggestions collection
Baidu map eagle eye track service
`this.$ Emit ` the child component passes multiple parameters to the parent component
Redis注解
Acquisition data transmission mode and online monitoring system of vibrating wire wireless acquisition instrument for engineering instruments
Redis annotation
微机原理学习笔记-常见寻址方式
Some advice for NS2 beginner.
连接查询和子查询
Arrays and objects in JS
Aircraft collision detection
Kinect for Unity3d----KinectManager









