当前位置:网站首页>addmodule_ allmerge_ ams_ im
addmodule_ allmerge_ ams_ im
2022-06-30 17:02:00 【youngleeyoung】
library(patchwork)
library(ggplot2)
library(ggalluvial)
library(svglite)
library(Seurat)
library(openxlsx)
library(Hmisc)
#https://www.jianshu.com/p/cef5663888ff
getwd()
path="G:/silicosis/sicosis/silicosis_ST/overlapped_map/addmodule_allmarkers_from_findallmarkers_allmerge_ams_im"
dir.create(path)
setwd(path)
getwd()
load("G:/silicosis/sicosis/yll/macrophage/no cluster2/0.3/pure_cluster3_in_allmerge-IM/silicosis_cluster_merge.rds")
table(All.merge$new.cluster.idents)
# Scale
markers=FindAllMarkers(All.merge,min.pct = 0.75,logfc.threshold = 0.8,only.pos = T)
head(markers)
unique(markers$cluster)
library(stringr)
Myselectedmarekrs=markers %>% filter(str_detect(markers$cluster,"AM"))
DotPlot(All.merge,features=Myselectedmarekrs$gene[1:30])+RotatedAxis()
#openxlsx::write.xlsx(markers,file = "G:/silicosis/sicosis/silicosis_ST/overlapped_map/addmodule/markers_forallmerge_ams_im.xlsx")
library(openxlsx)
load("G:/silicosis/sicosis/silicosis_ST/yll/0214/harmony_cluster/d_all/silicosis_ST_harmony_SCT_r0.6.rds")
load("G:/silicosis/sicosis/silicosis_ST/yll/0214/harmony_cluster/d_all/silicosis_ST_harmony_SCT_r0.6.rds")
#marker = read.xlsx("G:/silicosis/sicosis/silicosis_ST/overlapped_map/Rigional and cell markers.xlsx",
# sheet = "SingleCell_markers")
#markers=read.xlsx('G:/silicosis/sicosis/yll/macrophage/no cluster2/0.3/findmarkers_1and2/30cluster_markers.xlsx')
#markers=read.xlsx("G:/silicosis/sicosis/silicosis-1122-merge/silicosis_cluster_merge_markers.xlsx")
markers=read.xlsx("G:/silicosis/sicosis/silicosis_ST/overlapped_map/addmodule/markers_forallmerge_ams_im.xlsx")
head(markers)
library(dplyr)
markers=markers %>% group_by(cluster) %>% slice_head(n=20) %>%select(cluster,gene)
head(markers)
library(reshape2)
markers2=dcast(markers,gene~cluster)
head(markers2)
markers2[is.na(markers2)]<-0
head(markers2)
markers2=markers2[,-1]
marker=markers2
head(marker)
cellnames=colnames(marker) ##number=length(marker[,cellname])
library(Hmisc)
getwd()
#path="G:/silicosis/sicosis/silicosis_ST/overlapped_map/addmodule_allmarkers_from_findallmarkers"
path="G:/silicosis/sicosis/silicosis_ST/overlapped_map/addmodule_allmarkers_from_findallmarkers_allmerge_ams_im"
dir.create(path)
setwd(path)
getwd()
for (each in cellnames) {
#each='Myofibroblast/vascular smooth muscle cell'
cellname=each
mymarker=marker[,paste0(cellname)] %>% na.exclude() %>% unique() %>%
list() #capitalize() %>%
number=length(mymarker[[1]])
unlist(mymarker)
# Score a given set of genes And draw
if(1==1){
d.all=AddModuleScore(d.all,
features = mymarker,
name = paste0(cellname))
# The results are saved here
colnames(d.all@meta.data)
head(d.all@meta.data)
colnames(d.all@meta.data)[[9]]=paste0(cellname)
###
p1=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image")+ ggtitle(paste0("SiO2_7d")) #sio27d
p2=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.1")+ggtitle(paste0("NS_7d"))
p3=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.2")+ ggtitle(paste0("SiO2_56d"))
p4=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.3")+ggtitle(paste0(("NS_56d")))
jpeg(paste0(ifelse(grep(paste0(cellname),pattern = "/"),"Myofibroblast-vascular smooth muscle cell",paste0(cellname))
,paste0(cellname),"_","total_",length(unlist(mymarker)),"_",paste0(min(number),"-",max(number)),
paste(unlist(mymarker)[1:15],collapse = "_"),"_.jpeg"), # Take only before 15 individual
height = 12, width = 12, units = 'in', res=600)
p=ggpubr::ggarrange(p2,p1,p4,p3,ncol = 2,nrow =2)
print(p)
dev.off()
d.all@meta.data=d.all@meta.data[,1:8] }
}
for (each in c("Neutrophil","NK cell","T cell")) {
#each='Myofibroblast/vascular smooth muscle cell'
cellname=each
mymarker=marker[,paste0(cellname)] %>% na.exclude() %>% unique() %>%
list() #capitalize() %>%
number=length(mymarker[[1]])
unlist(mymarker)
# Score a given set of genes And draw
if(1==1){
d.all=AddModuleScore(d.all,
features = mymarker,
name = paste0(cellname))
# The results are saved here
colnames(d.all@meta.data)
head(d.all@meta.data)
colnames(d.all@meta.data)[[9]]=paste0(cellname)
###
p1=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image")+ ggtitle(paste0("SiO2_7d")) #sio27d
p2=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.1")+ggtitle(paste0("NS_7d"))
p3=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.2")+ ggtitle(paste0("SiO2_56d"))
p4=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.3")+ggtitle(paste0(("NS_56d")))
jpeg(paste0(ifelse(grep(paste0(cellname),pattern = "/"),"Myofibroblast-vascular smooth muscle cell",paste0(cellname))
,paste0(cellname),"_","total_",length(unlist(mymarker)),"_",paste0(min(number),"-",max(number)),
paste(unlist(mymarker)[1:15],collapse = "_"),"_.jpeg"), # Take only before 15 individual
height = 12, width = 12, units = 'in', res=600)
p=ggpubr::ggarrange(p2,p1,p4,p3,ncol = 2,nrow =2)
print(p)
dev.off()
d.all@meta.data=d.all@meta.data[,1:8] }
}
# as long as ns56 and sio2_56d
for (each in cellnames) {
#each='Myofibroblast/vascular smooth muscle cell'
cellname=each
mymarker=marker[,paste0(cellname)] %>% na.exclude() %>% unique() %>%
list() #capitalize() %>%
number=length(mymarker[[1]])
unlist(mymarker)
# Score a given set of genes And draw
if(1==1){
d.all=AddModuleScore(d.all,
features = mymarker,
name = paste0(cellname))
# The results are saved here
colnames(d.all@meta.data)
colnames(d.all@meta.data)[[9]]=paste0(cellname)
###
# p1=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image")+ ggtitle(paste0("SiO2_7d")) #sio27d
# p2=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.1")+ggtitle(paste0("NS_7d"))
p3=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.2")+ ggtitle(paste0("SiO2_56d"))
p4=SpatialFeaturePlot(d.all, features = paste0(cellname), slot = "scale.data",images = "image.3")+ggtitle(paste0(("NS_56d")))
jpeg(paste0(paste0(cellname),"_","total_",length(unlist(mymarker)),"_",paste0(min(number),"-",max(number)),
paste(unlist(mymarker)[1:15],collapse = "_"),"_.jpeg"), # Take only before 15 individual
height = 12, width = 12, units = 'in', res=600)
p=ggpubr::ggarrange(p4,p3,ncol = 1,nrow =2)
print(p)
dev.off()}
}
边栏推荐
- Sub chain cross technology source level exploration: an overview of xcvm
- [Demo] 循环写文件
- POJ Project Summer
- After 15 years of working on 21 types of hardware, where is Google?
- 9: Chapter 3: e-commerce engineering analysis: 4: [general module]; (to be written...)
- Php7.3 centos7.9 installing sqlserver extensions
- Niuke: how many different binary search trees are there
- Raft introduction
- 编译丨迅为STM32P157开发板编译U-Boot源码
- Eight basic sorting (detailed explanation)
猜你喜欢

Research on helmet wearing detection algorithm

【牛客网刷题系列 之 Verilog快速入门】~ 位拆分与运算

TCP socket and TCP connection

IO流_递归

redis数据结构分析

Rong Lianyun launched rphone based on Tongxin UOS to create a new ecology of localization contact center
![Halcon knowledge: regional topics [07]](/img/18/680997127047fb24b0ee4f19d8f2c5.png)
Halcon knowledge: regional topics [07]

Installing jupyter notebook under Anaconda
![[wechat applet] the hosting environment of the applet](/img/ee/0f1dee4a26eb62c2268484c1b59edf.png)
[wechat applet] the hosting environment of the applet

Hologres shared cluster helps Taobao subscribe to the extreme refined operation
随机推荐
register_ Chrdev and CDEV_ init cdev_ Add usage differences
深度学习——(2)几种常见的损失函数
[activity registration] it's your turn to explore the yuan universe! I will be waiting for you in Shenzhen on July 2!
【Verilog基础】十进制负数的八进制、十六进制表示
为了使远程工作不受影响,我写了一个内部的聊天室 | 社区征文
数据挖掘知识点整理(期末复习版)
Talk about telecommuting | community essay solicitation
安全帽佩戴检测算法研究
【Verilog基础】关于Clock信号的一些概念总结(clock setup/hold、clock tree、clock skew、clock latency、clock transition..)
IO流_递归
Research on helmet wearing detection algorithm
Half year inventory of new consumption in 2022: the industry is cold, but these nine tracks still attract gold
居家办公浅谈远程协助快速提效心得 | 社区征文
Rongsheng biology rushes to the scientific innovation board: it plans to raise 1.25 billion yuan, with an annual revenue of 260million yuan
坚果云-在新电脑上同步移动硬盘的文件
OpenCV中LineTypes各枚举值(LINE_4 、LINE_8 、LINE_AA )的含义
Rong Lianyun launched rphone based on Tongxin UOS to create a new ecology of localization contact center
Lambda表达式_Stream流_File类
CGR 21 (D,E,F)
《网络是怎么样连接的》读书笔记 - 汇总篇