当前位置:网站首页>Multi sensor fusion positioning (II) -- map based positioning
Multi sensor fusion positioning (II) -- map based positioning
2022-07-28 23:49:00 【The birch tree has no tears】
Catalog

One 、 Loop back detection

Loop detection can only eliminate part of the error , All errors cannot be eliminated . It is relatively simple to use feature point descriptors in vision .
1.1 be based on Scan Context

Three dimensional to two dimensional , Match with image .
1、 Grid


2、 Generate scan contest

3、 matching
The car faces close , The two figures are similar
In order to solve the big difference caused by different vehicle orientations , The image needs to be cut and translated to make the orientation similar
The author merges each column , Two dimensional to one dimensional , Find out where to cut roughly , Up to 3D fine matching


4、 Time complexity
How to quickly find matching frames
Count whether there are points in each grid , If the environment is similar , The number of points is similar .


1.2 Based on histogram

This is a solid-state lidar
Two 、 Back end optimization
Add the a priori position and attitude of loop and inertial navigation , Correct the error of odometer .

2.1 Lie group lie algebra
Using convex optimization to build graphs will use lie group lie algebra . Lie groups are matrices , Lie algebra is a vector




2.2 Pose correction based on loop
2.2.1 Calculate the residual term


2.2.2 Solve the optimization direction


2.3 A priori based optimization

3、 ... and 、 Establishment of point cloud map
3.1 technological process
Put the odometer 、 Loop 、 A priori fusion .
In the first frame, inertial navigation and odometer have relative positions , Transform odometer multiplication matrix into inertial navigation coordinate system .
When the time difference is greater than a certain value, the closed loop is detected

3.2 Point cloud distortion

Calculate time through geometric relationship
Four 、 Map based positioning
4.1 Overall process
In map matching , Robustness and running speed are more important , So in practice , be based on NDT The matching of is more widely used extensive .
Initialization problem

边栏推荐
猜你喜欢

脲酶丨Worthington杰克豆脲酶的特性及测定方案

什么是驱动程序签名,驱动程序如何获取数字签名?
![Trivy [2] tool vulnerability scanning](/img/7a/c1012c75b23076f5a9b09e5756adba.png)
Trivy [2] tool vulnerability scanning

【自】-刷题-BFS

剑指 Offer 41. 数据流中的中位数

Optimization and implementation of custom MVC

2022起重机械指挥考试题模拟考试平台操作

苹果官网正在更新维护 Apple Store,国行 iPhone 13 / Pro 等产品将最高优惠 600 元

【CNN】为什么CNN的卷积核大小一般都是奇数

Achieve high throughput through Wi Fi 7 - insight into the next generation of Wi Fi physical layer
随机推荐
金仓数据库KingbaseES 客户端编程接口指南 - ODBC特性支持约束
Worthington丨Worthington胰蛋白酶化学性质及相关研究
Blocking queue
多传感器融合定位(一)——3D激光里程计
经典的拓扑排序问题——LeetCode207 课程表+LeetCode210 课程表II
经典双栈实现队列,注意遍历栈的判定条件修改。
hutool官网(hutool好用吗)
猿人学第二十题
General addition, deletion, modification and query of custom MVC
Codeforces Round #810 (Div. 2) A - C
毕业三年之际写给可能迷茫的你我[转]
npm更换最新淘宝镜像
Jincang database kingbasees client Programming Interface Guide - ODBC feature support constraints
2022起重机械指挥考试题模拟考试平台操作
Trivy [2] tool vulnerability scanning
2022t elevator repair examination questions and simulation examination
金仓数据库 KingbaseES V8.3至V8.6迁移最佳实践(3. KingbaseES移植能力支撑体系)
Merkle tree
新一代超安全蜂窝电池 思皓爱跑上市13.99万元起售
2022G3锅炉水处理考试模拟100题模拟考试平台操作