当前位置:网站首页>Opencv feature extraction - hog
Opencv feature extraction - hog
2022-07-03 10:05:00 【Σίσυφος one thousand and nine hundred】
One 、HOG features
HOG(Histograms of Oriented Gradients) Gradient direction histogram
Two 、HOG Feature extraction process
1) Grayscale image transformation ( Think of the image as a x,y,z( Grayscale ) Three dimensional images of );
2) use Gamma The input image is normalized in color space by correction method ( normalization ); The purpose is to adjust the contrast of the image , Reduce the impact of local shadow and light changes in the image , At the same time, it can suppress the interference of noise ;
#if 1 // Image enhancement algorithm --gamma
int Gamma = 2;
int main(int args, char* arg)
{
Mat src = imread("C:\\Users\\19473\\Desktop\\opencv_images\\88.jpg");
if (!src.data)
{
printf("could not load image....\n");
}
imshow(" Original image ", src);
// Be careful : CV_32FC3
Mat dst(src.size(), CV_32FC3);
for (int i = 0; i < src.rows; i++)
{
for (int j = 0; j < src.cols; j++)
{
// Yes bgr Each channel of is calculated
dst.at<Vec3f>(i, j)[0] = pow(src.at<Vec3b>(i, j)[0], Gamma);
dst.at<Vec3f>(i, j)[1] = pow(src.at<Vec3b>(i, j)[1], Gamma);
dst.at<Vec3f>(i, j)[2] = pow(src.at<Vec3b>(i, j)[2], Gamma);
}
}
// normalization
normalize(dst, dst, 0, 255, CV_MINMAX);
convertScaleAbs(dst, dst);
imshow(" Enhanced image ", dst);
waitKey(0);
return -1;
}
#endif
3) Calculate the gradient of each pixel in the image ( Including size and direction ); The main purpose is to capture the contour information , At the same time, further weaken the interference of light
Mat non_max_supprusion(Mat dx, Mat dy) // What comes in is the difference matrix in two directions 3*3 Mask of
{
// Edge strength =sqrt(dx The square of +dy The square of )
Mat edge;
magnitude(dx, dy, edge);// Calculate the amplitude value
int rows = dx.rows;
int cols = dy.cols;
// Non maximum suppression of edge strength
Mat edgemag_nonMaxSup = Mat::zeros(dx.size(), dx.type());
// Use two steps to calculate And gradient direction And convert it to angleMatrix
for (int row = 1; row < rows - 1; row++)
{
for (int col = 1; col < cols - 1; col++)
{
float x = dx.at<float>(row, col);
float y = dx.at<float>(row, col);
// The direction of the gradient ---atan2f
float angle = atan2f(y, x) / CV_PI * 180;
// Edge strength of current position
float mag = edge.at<float>(row, col);
// Find the left and right directions
if (abs(angle) < 22.5 || abs(angle) > 157.5)
{
float left = edge.at<float>(row, col - 1);
float right = edge.at<float>(row, col + 1);
// Judge in two directions
if (mag > left && mag > right) {
edgemag_nonMaxSup.at<float>(row, col) = mag;
}
}
// Top left and bottom right
if ((abs(angle) >= 22.5 && abs(angle) < 67.5) || (abs(angle) < -112.5 && abs(angle) > 157.5))
{
float lefttop = edge.at<float>(row - 1, col - 1);
float rightbottom = edge.at<float>(row + 1, col + 1);
// Judge in two directions
if (mag > lefttop && mag > rightbottom) {
edgemag_nonMaxSup.at<float>(row, col) = mag;
}
}
// On Next Direction
if ((abs(angle) >= 67.5 && abs(angle) <= 112.5) || (abs(angle) >= -112.5 && abs(angle) <= -67.5))
{
float top = edge.at<float>(row - 1, col);
float down = edge.at<float>(row + 1, col);
// Judge in two directions
if (mag > top && mag > down) {
edgemag_nonMaxSup.at<float>(row, col) = mag;
}
}
// The upper right The lower left Direction
if ((abs(angle) > 122.5 && abs(angle) < 157.5) || (abs(angle) > -67.5 && abs(angle) <= -22.5))
{
float leftdown = edge.at<float>(row - 1, col + 1);
float rightup = edge.at<float>(row + 1, col - 1);
// Judge in two directions
if (mag > leftdown && mag > rightup) {
edgemag_nonMaxSup.at<float>(row, col) = mag;
}
}
}
}
return edgemag_nonMaxSup;
}
4) Divide the image into small cells( for example 8* 8 Pixels / cell); Work out each cell Gradient size and direction . Then set the gradient direction of each pixel in Within the interval ( Undirected :0-180, Directed :0-360) The average is divided into 9 individual bins, Every cell Pixels in the are represented by amplitude , Weighted voting for its gradient histogram .
5) Count each one cell The gradient histogram of ( The number of different gradients ), You can form each cell Of descriptor; Quick description seed
6) Will each several cell Form a block( for example 3 * 3 individual cell / block), One block All in cell Characteristics of descriptor In series, you get this block Of HOG features descriptor. Quickly describe seed normalization
7) The image image In all of the block Of HOG features descriptor In series, you can get the image( The target you want to detect ) Of HOG features descriptor 了 . This is the final feature vector for classification Feature data and detection window
For size 128×64 Size image , use 8*8 Pixel sell,2×2 individual cell Composed of 16×16 Pixel block, use 8 Pixel block Move step , In this way, the detection window block There are ((128-16)/8+1)×((64-16)/8+1)=15×7. be HOG The dimension of the feature descriptor is 15×7×4×9.
8) Match method
HOG The shortcomings of :
Slow speed , Poor real-time performance ; Difficult to deal with occlusion
3、 ... and 、 Code demonstration
int main(int args, char* arg)
{
// Target image
src = imread("C:\\Users\\19473\\Desktop\\opencv_images\\153.jpg");
if (!src.data)
{
printf("could not load image....\n");
}
namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
//namedWindow(OUT_TITLE, CV_WINDOW_AUTOSIZE);
imshow(INPUT_TITLE, src);
/*
// Resize the image
resize(src, dst,Size(64,128));
cvtColor(dst, src_gary, CV_BGR2GRAY);
HOGDescriptor detector(Size(64,128), Size(16,16), Size(8,8),Size(8,8),9);
vector<float> descripers;
vector<Point> locations;
detector.compute(src_gary, descripers, Size(0,0), Size(0, 0), locations);
printf("num of HOG: %d\n", descripers.size());
*/
//SVM classifier -- Narrator
HOGDescriptor hog = HOGDescriptor();
hog.setSVMDetector(hog.getDefaultPeopleDetector());
vector<Rect> foundloactions;
// Multiscale detection
hog.detectMultiScale(src, foundloactions, 0, Size(8, 8), Size(32, 32), 1.05, 2, false);
// if rects Nested , Then take the outermost rectangle and store it rect
for (size_t i = 0; i < foundloactions.size(); i++)
{
rectangle(src, foundloactions[i], Scalar(0, 0, 255), 2, 8.0);
}
namedWindow(OUT_TITLE, CV_WINDOW_AUTOSIZE);
imshow(OUT_TITLE, src);
waitKey(0);
return 0;
}
边栏推荐
- Working mode of 80C51 Serial Port
- 编程思想比任何都重要,不是比谁多会用几个函数而是比程序的理解
- Not many people can finally bring their interests to college graduation
- 01 business structure of imitation station B project
- 自动装箱与拆箱了解吗?原理是什么?
- Toolbutton property settings
- 单片机职业发展:能做下去的都成牛人了,熬不动就辞职或者改行了
- My 4G smart charging pile gateway design and development related articles
- 4G module at command communication package interface designed by charging pile
- Exception handling of arm
猜你喜欢
LeetCode - 933 最近的请求次数
openEuler kernel 技術分享 - 第1期 - kdump 基本原理、使用及案例介紹
2312、卖木头块 | 面试官与狂徒张三的那些事(leetcode,附思维导图 + 全部解法)
Programming ideas are more important than anything, not more than who can use several functions, but more than the understanding of the program
Yocto technology sharing phase IV: customize and add software package support
QT self drawing button with bubbles
Gpiof6, 7, 8 configuration
Opencv notes 20 PCA
单片机现在可谓是铺天盖地,种类繁多,让开发者们应接不暇
[Li Kou brush question notes (II)] special skills, module breakthroughs, classification and summary of 45 classic questions, and refinement in continuous consolidation
随机推荐
pycharm 无法引入自定义包
手机都算是单片机的一种,只不过它用的硬件不是51的芯片
对于新入行的同学,如果你完全没有接触单片机,建议51单片机入门
学历是一张通行证,门票,你有了它,可以踏入更高层次的环境里
Seven sorting of ten thousand words by hand (code + dynamic diagram demonstration)
Emballage automatique et déballage compris? Quel est le principe?
[combinatorics] Introduction to Combinatorics (combinatorial idea 3: upper and lower bound approximation | upper and lower bound approximation example Remsey number)
byte alignment
Pymssql controls SQL for Chinese queries
My notes on the development of intelligent charging pile (III): overview of the overall design of the system software
is_ power_ of_ 2 judge whether it is a multiple of 2
The 4G module designed by the charging pile obtains NTP time through mqtt based on 4G network
Tensorflow2.0 save model
Opencv notes 17 template matching
Uniapp realizes global sharing of wechat applet and custom sharing button style
Simulate mouse click
4G module designed by charging pile obtains signal strength and quality
4G module board level control interface designed by charging pile
Openeuler kernel technology sharing - Issue 1 - kdump basic principle, use and case introduction
Modelcheckpoint auto save model