当前位置:网站首页>[BP prediction] BP neural network based on AdaBoost realizes data regression prediction with matlab code
[BP prediction] BP neural network based on AdaBoost realizes data regression prediction with matlab code
2022-06-09 22:30:00 【Matlab scientific research studio】
1 brief introduction
BP Network is a typical feedforward neural network , The method of error back propagation is used in the weight training , It has the approximation function of nonlinear continuous rational function . In the process of signal forward transmission , The input signal enters from the input layer , After hidden layer processing , Reach the output layer . The neuron state of each layer only affects the neuron state of the next layer . Judge whether the result of the output layer is the desired output , If not , Then turn to back propagation , Then adjust the network weight and threshold according to the prediction error , So that BP The predicted output of neural network keeps approaching the expected output . Because of its simple structure , There are many adjustable parameters , Many training algorithms , Good handling ,BP Neural network has been widely used in practice .
Adaboost The algorithm is Boosting One of the typical applications of the algorithm .AdaBoost The learning algorithm selects a small number of very important rectangular features to construct a series of weak classifiers , Then these weak classifiers are cascaded to form a strong classifier . The algorithm selects the rectangle feature that can best distinguish positive and negative samples . For every feature , The weak classifier gives the threshold of an optimal classification function , Make the least number of samples misclassified .Adaboost The advantage of the algorithm is that it uses the weighted training data to replace the randomly selected training samples , Combine weak classifiers , Use weighted voting mechanism instead of average voting mechanism .


2 Part of the code
%% The code is based on BP_Adaboost The strong predictor of%% Clear environment variablesclcclear%% Download dataload data1 input output%% Weight initializationk=rand(1,2000);[m,n]=sort(k);% The training sampleinput_train=input(n(1:1900),:)';output_train=output(n(1:1900),:)';% Test samplesinput_test=input(n(1901:2000),:)';output_test=output(n(1901:2000),:)';% Sample weight[mm,nn]=size(input_train);D(1,:)=ones(1,nn)/nn;% Training sample normalization[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% Results statistics% Strong separator effectoutput=at*test_simu;error=output_test-output;plot(abs(error),'-*')hold onfor i=1:8error1(i,:)=test_simu(i,:)-output;endplot(mean(abs(error1)),'-or')title(' Absolute value of strong predictor prediction error ','fontsize',12)xlabel(' Prediction samples ','fontsize',12)ylabel(' The absolute value of the error ','fontsize',12)legend(' The strong predictor predicts ',' Weak predictor prediction ')%%
3 Simulation results

4 reference
[1] Li Xiang , Zhuquanyin . be based on Adaboost Algorithm and BP Tax forecasting based on neural network [J]. Computer application , 2012, 32(12):4.
About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .
Some theories cite network literature , If there is infringement, contact the blogger to delete .
边栏推荐
- 【BP预测】基于Adaboost的BP神经网络实现数据回归预测附matlab代码
- Aquanee will land in gate and bitmart in the near future, providing a good opportunity for low-level layout
- 2022安全生產月活動啟動安全生產與疫情防控兩手抓
- Slightly more complex queries
- 体系化目标一健身合辑
- 【滤波器】基于时变维纳滤波器实现语音去噪含Matlab源码
- LiDAR相关介绍
- Define requestanimationframe to execute once a second
- 时间序列预测中使用类EMD方法时的信息泄露和计算量问题
- node. JS connecting sqlserver encapsulating MSSQL
猜你喜欢

建筑工地数字化监管和科学战疫的智慧力量

汛期建筑施工现场安全生产风险智能防控

稍微复杂的查询

86. (leaflet house) leaflet military plotting - collection of linear arrows

Veracrypt create file type encrypted volume

Find My技术|物联网时代,苹果Find My实现真正的智能防丢

【刷题篇】跳跃游戏

Web3在遥远的未来?不,它已经来了!

【轴承故障分解】基于 ITD实现轴承故障信号分解含Matlab源码

Implementation principle and best practice of big data ecological security framework (Part I)
随机推荐
【图像分割】基于各向异性热扩散方程的图像分割附matlab代码
后疫情时代裸辞后面试软件测试工程师被拒,写下一些感悟和面试心得
Find my technology | in the era of Internet of things, apple find my realizes real intelligent loss prevention
Day5-t2029 & T39 -2022-01-20-not answer by yourself
C语言试题164之求定积分
Erc20 protocol API interface specification
2022安全生产月活动启动安全生产与疫情防控两手抓
【蓝桥杯集训100题】scratch眩晕苹果 蓝桥杯scratch比赛专项预测编程题 集训模拟练习题第12题
Find My产品|新款TWS耳机支持Find My功能,苹果Find My在第三方厂家应用更广泛
sparksql源码系列 | ResolveReferences规则count(*)详解
ffmpeg加opencv的人脸采集并做出识别的实战项目!
The most systematic automated test in 2022, test development interview questions, below 10K, are not recommended
什么是“大安全”产业?数字化赋能大安全产业发展
继承的所有特征
中金证券开户怎么样?安全吗?开户
chez scheme 环境搭建
健身是什么?
Implementation principle and best practice of big data ecological security framework (Part I)
第四范式陈雨强:企业智能决策的下一代技术「强化学习 + 环境学习」
数字化工程施工企业这样开展“安全生产月”活动