当前位置:网站首页>Target detection, object classification and semantic segmentation of UAV remote sensing images based on PyTorch deep learning
Target detection, object classification and semantic segmentation of UAV remote sensing images based on PyTorch deep learning
2022-07-30 07:09:00 【WangYan2022】
With the gradual upgrade of UAV automation capabilities,It is widely used in various fields,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等.But at the same time due to the low flying altitude of the drone、Get more target types、Factors such as complex environment and other factors make the processing of data obtained by drones more and more complicated.最近借助深度学习方法,Impressive results have been achieved for drone target recognition based on convolutional neural networks.深度卷积网络采用“端对端”的特征学习,Feature extraction through multiple layers,It reveals nonlinear features hidden in the data,能够从大量训练集中自动学习全局特征,This is also an important reason for its success in automatic target recognition in UAV images,也标志特征模型从手工特征向学习特征转变.同时,以PyTorchDeep learning platforms such as these also provide procedural frameworks for using convolutional neural networks.However, the mathematical models and computer algorithms involved in convolutional neural networks are very complex、运行及处理难度大,It is not easy to master various deep learning platforms.
【专家】:Dr. Chen,具有资深的技术底蕴和专业背景,And have been engaged in geography for a long time/遥感大数据,机器/深度学习,人工/Research work on brain-like intelligence,Many achievements have been published in top academic journals in the field.
/// 基 于 PyTorch 深 度 学 习 无 人 机 遥 感 影 像 目 标 检 测、地 物 分 类 及 语 义 分 割 实 践 技 术 应 用
Detailed explanation of deep convolutional network knowledge
1.Paradigms and problems of deep learning in drone image recognition
2.深度学习的历史发展历程
3.机器学习,Basic processing flow for tasks such as deep learning
4.卷积神经网络的基本原理
5.Principles and understanding of convolution operations
6.池化操作,全连接层,以及分类器的作用
7.BPAn understanding of the backpropagation algorithm
8.CNN模型代码详解
9.特征图,卷积核可视化分析

PyTorch应用与实践
1.PyTorch简介
2.动态计算图,静态计算图等机制
3.PyTorch的使用教程
4.PyTorch的学习案例
5.PyTorch的基本使用与API
6.PyTorchAn explanation of the image classification task
案例:
(1)不同超参数,如初始化,学习率对结果的影响
(2)使用PyTorchBuild a neural network and implement the classification of handwritten digits
(3)使用PyTorchModify the model and improve the classification model performance

Convolutional Neural Network Practice and UAV Image Target Detection
1.Basic knowledge of UAV image target detection under deep learning
2.目标检测数据集的图像和标签表示方式
3.Explain the evaluation scheme of the target detection model,包括正确率,精确率,召回率,mAP等
4.讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框架的演变和差异
5.讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型
6.A summary of the development of existing detection models
A case of UAV image target detection task
案例1:
(1)一份完整的Faster-RCNN The target detection of UAV images is realized under the model
(2)讲解数据集的制作过程,包括数据的存储和处理,并使用PyTorch加载数据集
(3)数据集标签的制作
(4)模型的搭建,组合和训练
(5)检测任数据集在验证过程中的注意事项
案例2:Plant identification and statistics from drone images

Deep Learning and UAV Image Segmentation Tasks
1.Basic concepts of UAV image segmentation task under deep learning
2.讲解FCN,SegNet,U-net等模型的差异
3.A summary of the development of segmentation models
4.Differences between drone image segmentation tasks and image segmentation
5.Considerations in the task of UAV image segmentation
案例
(1)A case study of drone land cover classification
(2)讲解数据集的准备和处理
(3)A strategy for dividing UAV imagery into small images
(4)模型的构建和训练方法
(5)验证集的使用过程中的注意事项


Semantic classification tasks and deep learning optimization techniques for point cloud data
1.深度学习下的ASL(机载激光扫描仪)Basic knowledge of the task of semantic classification of point cloud data
2.PointNet与PointNet++Basic explanation of the model
案例:
(1)Preprocessing and partitioning of point cloud data
(2)Semantic segmentation of point cloud data
(3)Prediction result analysis of point cloud data
Summary of deep learning related skills:
1.现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型
2.从模型演变中讲解实际训练模型的技巧
3.Explain optimization strategies for data
4.Explain the optimization strategy for the model
5.Explain the optimization strategy for the training process
6.Explain optimization strategies for detection tasks
7.Explain optimization strategies for segmentation tasks
8.提供一些常用的检测,分割数据集的标注工具



Additional learning
根据科研或生产实际,Brainstorm deep learning implementations
提供若干附加材料,包括数据集,标签工具、code and learning materials
实例回顾、训练、巩固
答疑与讨论
更多
●【教程】基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化
●【教程】基于PythonDeep learning remote sensing image classification and target recognition、分割
●【教程】PROSAILModel forward simulation and remote sensing extraction code implementation of vegetation parameters
●【教程】高光谱遥感数值建模技术及在植被、水体、Soil information extraction
●【教程】Remote sensing inversion and data assimilation of vegetation parameters
●【教程】“卫星-无人机-地面”The rapid use of remote sensing data and the realization method of ground object content calculation
●【教程】陆面生态水文模拟与多源遥感数据同化的实践技术应用
●【教程】长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等
●【教程】近地面无人机植被定量遥感与生理参数反演实践技术应用
●【教程】无人机遥感在农林信息提取中的实现方法与GIS融合应用
●【教程】InVEST模型在生态系统服务供需、碳中和等领域中的应用及论文写作技能
●【教程】MAXENT模型生物多样性生境模拟与保护优先区甄选、保护区布局优化评估及论文写作技巧
边栏推荐
- 用pop3收取gmail的邮件
- SQL Server Installation Tutorial
- 边境的悍匪—机器学习实战:第四章 训练模型
- Xcode 绑定按钮点击事件
- Arthas command parsing (jvm/thread/stack/heapdump)
- Common exception analysis of Redis client
- TDengine cluster construction
- [Getting C language from zero basis - navigation summary]
- The first WebAssembly program
- The most powerful and most commonly used SQL statements in history
猜你喜欢

常用损失函数(二):Dice Loss

十二、Kotlin进阶学习:一、Lambda 表达式;二、高阶函数;

为什么会出现梯度爆炸和梯度消失现象?怎么缓解这种现象的发生?

十六、Kotlin进阶学习:协程详细学习。

Thread state of five

R - GIS: how to use R language implementation of GIS geospatial analysis and model prediction

二叉树(一):深度优先遍历与广度优先遍历

边境的悍匪—机器学习实战:第八章 降维

The first WebAssembly program

Nodejs PM2 monitoring and alarm email (2)
随机推荐
CNN经典模型发展进程
Using PyQt5 to add an interface to YoloV5 (1)
基于MATLAB 2021b的机器学习、深度学习
用户密码加密编码使用 Bcrypt 代替 MD5,SHA1和SHA256
Pytorch(二):数据读取机制(DataLoader、DataSet)与图像预处理模块(transforms)
Arthas 命令解析(watch/tt/sc)
Use kotlin to extend plugins/dependencies to simplify code (after the latest version 4.0, this plugin has been deprecated, so please choose to learn, mainly to understand.)
SQL Server Installation Tutorial
Simulation of Future Air Pollution Changes Based on Global Model Comparison Program CMIP6 and Regional Climate-Chemistry Coupling Model WRF-Chem
XMLBean的基础运用
边境的悍匪—Kaggle—泰坦尼克号生还预测详细教程
边境的悍匪—机器学习实战:第十六章使用RNN和注意力机制进行自然语言处理
Mysql client common exception analysis
Oracle数据库SQL优化详解
工厂模式(Swift 实现)
二十二、Kotlin进阶学习:简单学习RecyclerView实现列表展示;
MYSQL一站式学习,看完即学完
shardingsphere 分库分表及配置示例
第一个WebAssembly程序
MySQL 索引优化及失效场景