当前位置:网站首页>Detectron2 draw confusion matrix, PR curve and confidence curve
Detectron2 draw confusion matrix, PR curve and confidence curve
2022-06-26 09:14:00 【G fruit】
Let me write it out front
As the title of the article says :detectron2 Draw a confusion matrix 、PR curve 、 Confidence curve
detection2 There is no such function , Drawing code reference from yolov5 Source code :ultralytics|yolov5
A digression , Now yolov5 can pip install yolov5 Used as a library function , It's really good !
And what I want to say is , This part of the code is not easy to understand , But the idea is clear , I have successfully transplanted it many times , It must be able to run through , Don't run away with code , An error is reported and the code is said to be no good , The basic ability to look at the code is still necessary .
This code is only for learning and communication , If there is any bug You can solve it by yourself , I really can't solve it, so I asked me in the comment area .
Complete code
confusion_matrix.py(306 Line code )
This code is added to detection2/evaluation/ Under the table of contents , Follow coco_evaluation.py In the peer Directory
function : The function of calculating the confusion matrix 、 Calculation iou Function of 、 Drawing functions, etc ( Reference from yolov5 Of utils/metrics.py)
import math
import warnings
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
def __init__(self, nc, conf=0.25, iou_thres=0.45):
self.matrix = np.zeros((nc + 1, nc + 1))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_batch(self, detections, labels):#
""" Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """
'''prediction[coco_dt.anns[i]["score"]'''
detections = torch.tensor(xywh2xyxy(detections))
labels = torch.tensor(np.hstack((labels[:,0][:,None],xywh2xyxy(labels[:,1:]))))
'''mark from yolov5'''
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 0].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
'''0:gt_bbox_id 1:dt_bbox_id 2:iou'''
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]#np.unique Remove duplicates
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(np.int16)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # background FP
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # background FN
def matrix(self):
return self.matrix
def plot(self, normalize=True, save_dir='', names=(), rec_or_pred=0):#0=recall, 1=pred
try:
import seaborn as sn
array = self.matrix / ((self.matrix.sum(rec_or_pred).reshape(1, -1) + 1E-6) if normalize else 1) # normalize columns
array[array < 0.0005] = 0.00 #np.nan # don't annotate (would appear as 0.00)
array = self.matrix + array
fig = plt.figure(figsize=(8, 6), tight_layout=True)
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array, annot=self.nc < 30, annot_kws={
"size": 8}, cmap='Blues', fmt='.2f', square=True,
xticklabels=names + ['background FP'] if labels else "auto",
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
if rec_or_pred == 0:
REC = sum([self.matrix[k, k] for k in range(self.nc)]) / sum(self.matrix.sum(rec_or_pred)[:-1])
fig.suptitle("Recall (%.3f)"%REC)
else:
PRC = sum([self.matrix[k, k] for k in range(self.nc)]) / sum(self.matrix.sum(rec_or_pred)[:-1])
fig.suptitle("Precision (%.3f)"%PRC)
#plt.show()
fig.savefig(save_dir, dpi=250)
#plt.close()
return REC, PRC, 2*REC*PRC/(REC+PRC)
except Exception as e:
print(f'WARNING: ConfusionMatrix plot failure: {
e}')
def print(self):
# for i in range(self.nc + 1):
# print(' '.join(map(str, self.matrix[i])))
REC = sum([self.matrix[k, k] for k in range(self.nc)]) / sum(self.matrix.sum(0)[:-1])
PRC = sum([self.matrix[k, k] for k in range(self.nc)]) / sum(self.matrix.sum(1)[:-1])
print("\nRecall: (%.4f)"%REC, "\nPrecision: (%.4f)"%PRC, "\nF1-score: (%.4f)" %(2 * REC * PRC / (REC + PRC)))
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
""" Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def process_batch(detections, labels, iouv):
""" Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: correct (Array[N, 10]), for 10 IoU levels """
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
return correct
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
""" Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). plot: Plot precision-recall curve at [email protected] save_dir: Plot save directory # Returns The average precision as computed in py-faster-rcnn. """
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + 1e-16) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and j == 0:
py.append(np.interp(px, mrec, mpre)) # precision at [email protected]
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
if plot:
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
i = f1.mean(0).argmax() # max F1 index
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves # Arguments recall: The recall curve (list) precision: The precision curve (list) # Returns Average precision, precision curve, recall curve """
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
# Precision-recall curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{
names[i]} {
ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
# Metric-confidence curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{
names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = py.mean(0)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {
y.max():.2f} at {
px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()
def plot_mc_pr_curve(detections, labels, save_dir, names):
detections = torch.tensor(xywh2xyxy(detections))
labels = torch.tensor(np.hstack((labels[:, 0][:, None], xywh2xyxy(labels[:, 1:]))))
iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95
correct = process_batch(detections, labels, iouv)
stats = []
tcls = labels[:, 0].tolist() # target class
stats.append((correct.cpu(), detections[:, 4].cpu(), detections[:, 5].cpu(), tcls))
# (correct, conf, pcls, tcls)
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=True, save_dir=save_dir, names=names)
After modification coco_evaluation.py(625 Line code )
The original code is in detection2/evaluation/ Under the table of contents , Replace this code with the original coco_evaluation.py
function : call confusion_matrix.py Inside the function to draw , You can annotate or uncomment the code according to your own needs ( altogether 36 That's ok )
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import pickle
from collections import OrderedDict
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from tabulate import tabulate
import detectron2.utils.comm as comm
from detectron2.config import CfgNode
from detectron2.data import MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_json
from detectron2.evaluation.fast_eval_api import COCOeval_opt
from detectron2.structures import Boxes, BoxMode, pairwise_iou
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import create_small_table
from .evaluator import DatasetEvaluator
class COCOEvaluator(DatasetEvaluator):
""" Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """
def __init__(
self,
dataset_name,
tasks=None,
distributed=True,
output_dir=None,
*,
use_fast_impl=True,
kpt_oks_sigmas=(),
cfg_file=None ###additional
):
""" Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """
self._logger = logging.getLogger(__name__)
self._distributed = distributed
self._output_dir = output_dir
self._use_fast_impl = use_fast_impl
self._cfg_file = cfg_file##
if tasks is not None and isinstance(tasks, CfgNode):
kpt_oks_sigmas = (
tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas
)
self._logger.warn(
"COCO Evaluator instantiated using config, this is deprecated behavior."
" Please pass in explicit arguments instead."
)
self._tasks = None # Infering it from predictions should be better
else:
self._tasks = tasks
self._cpu_device = torch.device("cpu")
self._metadata = MetadataCatalog.get(dataset_name)
if not hasattr(self._metadata, "json_file"):
self._logger.info(
f"'{
dataset_name}' is not registered by `register_coco_instances`."
" Therefore trying to convert it to COCO format ..."
)
cache_path = os.path.join(output_dir, f"{
dataset_name}_coco_format.json")
self._metadata.json_file = cache_path
convert_to_coco_json(dataset_name, cache_path)
json_file = PathManager.get_local_path(self._metadata.json_file)
with contextlib.redirect_stdout(io.StringIO()):
self._coco_api = COCO(json_file)
# Test set json files do not contain annotations (evaluation must be
# performed using the COCO evaluation server).
self._do_evaluation = "annotations" in self._coco_api.dataset
if self._do_evaluation:
self._kpt_oks_sigmas = kpt_oks_sigmas
def reset(self):
self._predictions = []
def process(self, inputs, outputs):
""" Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """
for input, output in zip(inputs, outputs):
prediction = {
"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
if "proposals" in output:
prediction["proposals"] = output["proposals"].to(self._cpu_device)
if len(prediction) > 1:
self._predictions.append(prediction)
def evaluate(self, img_ids=None):
""" Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """
if self._distributed:
comm.synchronize()
predictions = comm.gather(self._predictions, dst=0)
predictions = list(itertools.chain(*predictions))
if not comm.is_main_process():
return {
}
else:
predictions = self._predictions
if len(predictions) == 0:
self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
return {
}
if self._output_dir:
PathManager.mkdirs(self._output_dir)
file_path = os.path.join(self._output_dir, "instances_predictions.pth")
with PathManager.open(file_path, "wb") as f:
torch.save(predictions, f)
self._results = OrderedDict()
if "proposals" in predictions[0]:
self._eval_box_proposals(predictions)
if "instances" in predictions[0]:#\\\\
self._eval_predictions(predictions, img_ids=img_ids)
# Copy so the caller can do whatever with results
return copy.deepcopy(self._results)
def _tasks_from_predictions(self, predictions):
""" Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """
tasks = {
"bbox"}
for pred in predictions:
if "segmentation" in pred:
tasks.add("segm")
if "keypoints" in pred:
tasks.add("keypoints")
return sorted(tasks)
def _eval_predictions(self, predictions, img_ids=None):
""" Evaluate predictions. Fill self._results with the metrics of the tasks. """
self._logger.info("Preparing results for COCO format ...")
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
tasks = self._tasks or self._tasks_from_predictions(coco_results)
# unmap the category ids for COCO
if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
num_classes = len(all_contiguous_ids)
assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1
reverse_id_mapping = {
v: k for k, v in dataset_id_to_contiguous_id.items()}
for result in coco_results:
category_id = result["category_id"]
assert category_id < num_classes, (
f"A prediction has class={
category_id}, "
f"but the dataset only has {
num_classes} classes and "
f"predicted class id should be in [0, {
num_classes - 1}]."
)
result["category_id"] = reverse_id_mapping[category_id]
if self._output_dir:
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(coco_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info(
"Evaluating predictions with {} COCO API...".format(
"unofficial" if self._use_fast_impl else "official"
)
)
for task in sorted(tasks):
assert task in {
"bbox", "segm", "keypoints"}, f"Got unknown task: {
task}!"
coco_eval = (
_evaluate_predictions_on_coco(
self._coco_api,
coco_results,
task,
kpt_oks_sigmas=self._kpt_oks_sigmas,
use_fast_impl=self._use_fast_impl,
img_ids=img_ids,
cfg_file=self._cfg_file,
)
if len(coco_results) > 0
else None # cocoapi does not handle empty results very well
)
print("============Per-category AP===========")
'''per-category AP'''
res = self._derive_coco_results(
coco_eval, task, class_names=self._metadata.get("thing_classes")
)
self._results[task] = res
def _eval_box_proposals(self, predictions):
""" Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """
if self._output_dir:
# Saving generated box proposals to file.
# Predicted box_proposals are in XYXY_ABS mode.
bbox_mode = BoxMode.XYXY_ABS.value
ids, boxes, objectness_logits = [], [], []
for prediction in predictions:
ids.append(prediction["image_id"])
boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy())
objectness_logits.append(prediction["proposals"].objectness_logits.numpy())
proposal_data = {
"boxes": boxes,
"objectness_logits": objectness_logits,
"ids": ids,
"bbox_mode": bbox_mode,
}
with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f:
pickle.dump(proposal_data, f)
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info("Evaluating bbox proposals ...")
res = {
}
areas = {
"all": "", "small": "s", "medium": "m", "large": "l"}
for limit in [100, 1000]:
for area, suffix in areas.items():
stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit)
key = "AR{}@{:d}".format(suffix, limit)
res[key] = float(stats["ar"].item() * 100)
self._logger.info("Proposal metrics: \n" + create_small_table(res))
self._results["box_proposals"] = res
def _derive_coco_results(self, coco_eval, iou_type, class_names=None):
""" Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """
metrics = {
"bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
"segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"],
"keypoints": ["AP", "AP50", "AP75", "APm", "APl"],
}[iou_type]
if coco_eval is None:
self._logger.warn("No predictions from the model!")
return {
metric: float("nan") for metric in metrics}
# the standard metrics
results = {
metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan")
for idx, metric in enumerate(metrics)
}
self._logger.info(
"Evaluation results for {}: \n".format(iou_type) + create_small_table(results)
)
if not np.isfinite(sum(results.values())):
self._logger.info("Some metrics cannot be computed and is shown as NaN.")
if class_names is None or len(class_names) <= 1:
return results
# Compute per-category AP
# from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa
precisions = coco_eval.eval["precision"]
# precision has dims (iou, recall, cls, area range, max dets)
assert len(class_names) == precisions.shape[2]
results_per_category = []
for idx, name in enumerate(class_names):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
#print("\n\niou:",precisions.shape[0])=10
precision = precisions[0, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float("nan")
results_per_category.append(("{}".format(name), float(ap * 100)))
# tabulate it
N_COLS = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)])
table = tabulate(
results_2d,
tablefmt="pipe",
floatfmt=".3f",
headers=["category", "AP50"] * (N_COLS // 2),#AP
numalign="left",
)
self._logger.info("Per-category {} AP: \n".format(iou_type) + table)
results.update({
"AP50-" + name: ap for name, ap in results_per_category})#AP
return results
def instances_to_coco_json(instances, img_id):
""" Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """
num_instance = len(instances)
if num_instance == 0:
return []
boxes = instances.pred_boxes.tensor.numpy()
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
boxes = boxes.tolist()
scores = instances.scores.tolist()
classes = instances.pred_classes.tolist()
has_mask = instances.has("pred_masks")
if has_mask:
# use RLE to encode the masks, because they are too large and takes memory
# since this evaluator stores outputs of the entire dataset
rles = [
mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
for mask in instances.pred_masks
]
for rle in rles:
# "counts" is an array encoded by mask_util as a byte-stream. Python3's
# json writer which always produces strings cannot serialize a bytestream
# unless you decode it. Thankfully, utf-8 works out (which is also what
# the pycocotools/_mask.pyx does).
rle["counts"] = rle["counts"].decode("utf-8")
has_keypoints = instances.has("pred_keypoints")
if has_keypoints:
keypoints = instances.pred_keypoints
results = []
for k in range(num_instance):
result = {
"image_id": img_id,
"category_id": classes[k],
"bbox": boxes[k],
"score": scores[k],
}
if has_mask:
result["segmentation"] = rles[k]
if has_keypoints:
# In COCO annotations,
# keypoints coordinates are pixel indices.
# However our predictions are floating point coordinates.
# Therefore we subtract 0.5 to be consistent with the annotation format.
# This is the inverse of data loading logic in `datasets/coco.py`.
keypoints[k][:, :2] -= 0.5
result["keypoints"] = keypoints[k].flatten().tolist()
results.append(result)
return results
# inspired from Detectron:
# https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa
def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None):
""" Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """
# Record max overlap value for each gt box
# Return vector of overlap values
areas = {
"all": 0,
"small": 1,
"medium": 2,
"large": 3,
"96-128": 4,
"128-256": 5,
"256-512": 6,
"512-inf": 7,
}
area_ranges = [
[0 ** 2, 1e5 ** 2], # all
[0 ** 2, 32 ** 2], # small
[32 ** 2, 96 ** 2], # medium
[96 ** 2, 1e5 ** 2], # large
[96 ** 2, 128 ** 2], # 96-128
[128 ** 2, 256 ** 2], # 128-256
[256 ** 2, 512 ** 2], # 256-512
[512 ** 2, 1e5 ** 2],
] # 512-inf
assert area in areas, "Unknown area range: {}".format(area)
area_range = area_ranges[areas[area]]
gt_overlaps = []
num_pos = 0
for prediction_dict in dataset_predictions:
predictions = prediction_dict["proposals"]
# sort predictions in descending order
# TODO maybe remove this and make it explicit in the documentation
inds = predictions.objectness_logits.sort(descending=True)[1]
predictions = predictions[inds]
ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"])
anno = coco_api.loadAnns(ann_ids)
gt_boxes = [
BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
for obj in anno
if obj["iscrowd"] == 0
]
gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes
gt_boxes = Boxes(gt_boxes)
gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0])
if len(gt_boxes) == 0 or len(predictions) == 0:
continue
valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1])
gt_boxes = gt_boxes[valid_gt_inds]
num_pos += len(gt_boxes)
if len(gt_boxes) == 0:
continue
if limit is not None and len(predictions) > limit:
predictions = predictions[:limit]
overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes)
_gt_overlaps = torch.zeros(len(gt_boxes))
for j in range(min(len(predictions), len(gt_boxes))):
# find which proposal box maximally covers each gt box
# and get the iou amount of coverage for each gt box
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# find which gt box is 'best' covered (i.e. 'best' = most iou)
gt_ovr, gt_ind = max_overlaps.max(dim=0)
assert gt_ovr >= 0
# find the proposal box that covers the best covered gt box
box_ind = argmax_overlaps[gt_ind]
# record the iou coverage of this gt box
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert _gt_overlaps[j] == gt_ovr
# mark the proposal box and the gt box as used
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
# append recorded iou coverage level
gt_overlaps.append(_gt_overlaps)
gt_overlaps = (
torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32)
)
gt_overlaps, _ = torch.sort(gt_overlaps)
if thresholds is None:
step = 0.05
thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
recalls = torch.zeros_like(thresholds)
# compute recall for each iou threshold
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)#t
# ar = 2 * np.trapz(recalls, thresholds)
ar = recalls.mean()
return {
"ar": ar,
"recalls": recalls,
"thresholds": thresholds,
"gt_overlaps": gt_overlaps,
"num_pos": num_pos,
}
def _evaluate_predictions_on_coco(
coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True,
img_ids=None, cfg_file=None
):
""" Evaluate the coco results using COCOEval API. """
assert len(coco_results) > 0
if iou_type == "segm":
coco_results = copy.deepcopy(coco_results)
# When evaluating mask AP, if the results contain bbox, cocoapi will
# use the box area as the area of the instance, instead of the mask area.
# This leads to a different definition of small/medium/large.
# We remove the bbox field to let mask AP use mask area.
for c in coco_results:
c.pop("bbox", None)
coco_dt = coco_gt.loadRes(coco_results)
''' '''
This code 36 That's ok ( Reference resources yolov5 Source code ) For me to add the drawing code , The main functions are as follows :
1.coco_dt Turn it into predictions
2.coco_gt Turn into labels
3. draw confusion matrix
4. draw PR Curves, etc
''' plot = True #(cfg_file != None) and (isinstance(cfg_file,CfgNode)) print("plot: ",plot) if plot: from ..utils.confusion_matrix import ConfusionMatrix,xywh2xyxy,process_batch,ap_per_class C_M = ConfusionMatrix(nc=3, conf=0.65,iou_thres=0.5) stats = [] for i in range(len(coco_gt.imgs)):#460 Pictures bbox_gt = np.array([y['bbox'] for y in coco_gt.imgToAnns[20210700001+i]]) class_gt = np.array([[y['category_id']-1] for y in coco_gt.imgToAnns[20210700001+i]]) labels = np.hstack((class_gt,bbox_gt)) bbox_dt = np.array([y['bbox'] for y in coco_dt.imgToAnns[20210700001+i]]) conf_dt = np.array([[y['score']] for y in coco_dt.imgToAnns[20210700001+i]]) class_dt = np.array([[y['category_id']-1] for y in coco_dt.imgToAnns[20210700001+i]]) predictions = np.hstack((np.hstack((bbox_dt,conf_dt)),class_dt)) C_M.process_batch(predictions, labels) #'''PR Isocurve ''' # detects = torch.tensor(xywh2xyxy(predictions)) # labs = torch.tensor(np.hstack((labels[:, 0][:, None], xywh2xyxy(labels[:, 1:])))) # iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95 # correct = process_batch(detects, labs, iouv) # tcls = labs[:, 0].tolist() # target class # stats.append((correct.cpu(), detects[:, 4].cpu(), detects[:, 5].cpu(), tcls)) C_M.print() # plot_dir = "/home/server/xcg/SwinT_detectron2/" + cfg_file.OUTPUT_DIR # # names = {k: v for k, v in enumerate(["fuwo", "cewo", "zhanli"])} # stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy # if len(stats) and stats[0].any(): # p, r, ap, f1, ap_class = ap_per_class(*stats, plot=True, save_dir=plot_dir, names=names) # C_M.plot(save_dir=plot_dir+ 'confusion_matrix_rec.png',names=["fuwo","cewo","zhanli"], rec_or_pred=0) # C_M.plot(save_dir=plot_dir+ 'confusion_matrix_pred.png',names=["fuwo", "cewo", "zhanli"], rec_or_pred=1) '''
coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type)
if img_ids is not None:
coco_eval.params.imgIds = img_ids
if iou_type == "keypoints":
# Use the COCO default keypoint OKS sigmas unless overrides are specified
if kpt_oks_sigmas:
assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!"
coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas)
# COCOAPI requires every detection and every gt to have keypoints, so
# we just take the first entry from both
num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3
num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3
num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas)
assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, (
f"[COCOEvaluator] Prediction contain {
num_keypoints_dt} keypoints. "
f"Ground truth contains {
num_keypoints_gt} keypoints. "
f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {
num_keypoints_oks}. "
"They have to agree with each other. For meaning of OKS, please refer to "
"http://cocodataset.org/#keypoints-eval."
)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()#Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.799
return coco_eval
This code 36 That's ok ( Reference resources yolov5 Source code ) For me to add the drawing code , The main functions are as follows :
1.coco_dt Turn it into predictions
2.coco_gt Turn into labels
3. draw confusion matrix
4. draw PR Curves, etc
plot = True #(cfg_file != None) and (isinstance(cfg_file,CfgNode))
print("plot: ",plot)
if plot:
from ..utils.confusion_matrix import ConfusionMatrix,xywh2xyxy,process_batch,ap_per_class
C_M = ConfusionMatrix(nc=3, conf=0.65,iou_thres=0.5)
stats = []
for i in range(len(coco_gt.imgs)):#460 Pictures
bbox_gt = np.array([y['bbox'] for y in coco_gt.imgToAnns[20210700001+i]])
class_gt = np.array([[y['category_id']-1] for y in coco_gt.imgToAnns[20210700001+i]])
labels = np.hstack((class_gt,bbox_gt))
bbox_dt = np.array([y['bbox'] for y in coco_dt.imgToAnns[20210700001+i]])
conf_dt = np.array([[y['score']] for y in coco_dt.imgToAnns[20210700001+i]])
class_dt = np.array([[y['category_id']-1] for y in coco_dt.imgToAnns[20210700001+i]])
predictions = np.hstack((np.hstack((bbox_dt,conf_dt)),class_dt))
C_M.process_batch(predictions, labels)
#'''PR Isocurve '''
# detects = torch.tensor(xywh2xyxy(predictions))
# labs = torch.tensor(np.hstack((labels[:, 0][:, None], xywh2xyxy(labels[:, 1:]))))
# iouv = torch.linspace(0.5, 0.95, 10) # iou vector for [email protected]:0.95
# correct = process_batch(detects, labs, iouv)
# tcls = labs[:, 0].tolist() # target class
# stats.append((correct.cpu(), detects[:, 4].cpu(), detects[:, 5].cpu(), tcls))
C_M.print()
# plot_dir = "/home/server/xcg/SwinT_detectron2/" + cfg_file.OUTPUT_DIR
#
# names = {k: v for k, v in enumerate(["fuwo", "cewo", "zhanli"])}
# stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
# if len(stats) and stats[0].any():
# p, r, ap, f1, ap_class = ap_per_class(*stats, plot=True, save_dir=plot_dir, names=names)
# C_M.plot(save_dir=plot_dir+ 'confusion_matrix_rec.png',names=["fuwo","cewo","zhanli"], rec_or_pred=0)
# C_M.plot(save_dir=plot_dir+ 'confusion_matrix_pred.png',names=["fuwo", "cewo", "zhanli"], rec_or_pred=1)
边栏推荐
- [qnx hypervisor 2.2 user manual]12.2 terminology (II)
- Which software is safer to open an account on
- 浅谈一下Type-C接口发展历程
- PD fast magnetization mobile power supply scheme
- Self learning neural network series - 7 feedforward neural network pre knowledge
- yolov5进阶之零环境快速创建及测试
- 如何利用最少的钱,快速打开淘宝流量入口?
- Pytorch neural network
- 设置QCheckbox 样式的注意事项
- Self taught neural network series - 3. First knowledge of neural network
猜你喜欢

基于SSM的电脑商城

Self learning neural network series - 7 feedforward neural network pre knowledge

Notes on setting qccheckbox style

Upgrade phpcms applet plug-in API interface to 4.3 (add batch acquisition interface, search interface, etc.)

Phpcms V9 background article list adds one click push to Baidu function

基于SSM的毕业论文管理系统

Computer mall based on SSM

Runtimeerror: object has no attribute NMS error record when using detectron2

《单片机原理及应用》——概述

《單片機原理及應用》——概述
随机推荐
Self taught programming series - 4 numpy arrays
Phpcms mobile station module implements custom pseudo static settings
基于SSM的毕业论文管理系统
Implementation code of interceptor and filter
编辑类型信息
Unity 接入图灵机器人
Runtimeerror: object has no attribute NMS error record when using detectron2
Sqoop merge usage
Self taught neural network series - 4 learning of neural network
PD fast magnetization mobile power supply scheme
phpcms v9商城模块(修复自带支付宝接口bug)
行为树 文件说明
Data warehouse (1) what is data warehouse and what are the characteristics of data warehouse
Machine learning (Part 2)
Live review | smardaten lihongfei interprets the Research Report on China's low / no code industry: the wind direction has changed
[open source] use phenocv weedcam for more intelligent and accurate weed management
板端电源硬件调试BUG
20220623 getting started with Adobe Illustrator
Graduation thesis management system based on SSM
Dedecms applet plug-in is officially launched, and one click installation does not require any PHP or SQL Foundation