当前位置:网站首页>Numpy's Matplotlib
Numpy's Matplotlib
2022-06-26 18:17:00 【Little fox dreams of going to fairy tale town】
Matplotlib yes Python Drawing library of , It is associated with Numpy Use it together
【 Cited example 】
Draw y=2*x+5 Function image of
import numpy as np
from matplotlib import pyplot as plt
# Set abscissa value 、 Determine the function expression
x = np.arange(1, 11)
y = 2 * x + 5
# Add the title 、 Abscissa 、 Ordinate label
plt.title("Matplotlib demo")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
# Draw a function image
plt.plot(x, y)
plt.show()
【 Running results 】
If you want the function image to appear as dots , Instead of lines , You need to
plt.plot(x,y) Change it to plt.plot(x,y,'ob')
【 Running results 】
Sine wave y=sin(x)
import numpy as np
from matplotlib import pyplot as plt
# Set abscissa value 、 Determine the function expression
x = np.arange(0, 3*np.pi,0.1)
y = np.sin(x)
# Add the title 、 Abscissa 、 Ordinate label
plt.title("y=sin(x)")
plt.xlabel("x axis caption")
plt.ylabel("y axis caption")
# Draw a function image
plt.plot(x, y)
plt.show()
【 Running results 】
The cosine function simply takes
y = np.sin(x) Change it to y = np.cos(x) that will do
subplot() function
application subplot() function , Draw different things in the same picture
# ReLU and Sigmoid Activation function diagram
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# Set picture size
plt.figure(figsize=(6, 4))
# x yes 1 Dimension group , The array size is from -10. To 10. The real number , every other 0.1 Take a point
x = np.arange(-10, 10, 0.1)
# Calculation Sigmoid function
s = (np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x))
# Calculation ReLU function
y = np.clip(x, a_min = 0., a_max = None)
#########################################################
# The following part is the drawing program
# Set up two subgraph windows , take Sigmoid The function image of is drawn on the top
f = plt.subplot(2,1,1)
# Draw function curve
plt.plot(x, s, color='r')
# Add a text description
plt.text(-5., 0.9, r'$y=sigmoid(x)$', fontsize=13)
# Format axis
currentAxis=plt.gca()
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)
# take ReLU The function image of is drawn below
f = plt.subplot(2,1,2)
# Draw function curve
plt.plot(x, y, color='g')
# Add a text description
plt.text(-3.0, 9, r'$y=ReLU(x)$', fontsize=13)
# Format axis
currentAxis=plt.gca()
currentAxis.xaxis.set_label_text('x', fontsize=15)
currentAxis.yaxis.set_label_text('y', fontsize=15)
plt.show()
【 Running results 】
Common picture
from matplotlib import pyplot as plt
import numpy as np
n = 256 #n It can be understood as the smoothness of the curve
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X)
plt.plot(X,Y+1,color='red',alpha=1.00)
plt.plot(X,Y-1,color='blue',alpha=1.00)
plt.show()
【 Running results 】
Bar chart
from matplotlib import pyplot as plt
# Data sets 1
x = [5,8,11] # Abscissa
y = [12,16,6] # Corresponding value
# Data sets 2
x2 = [6,9,12] # Abscissa
y2 = [6,15,7] # Corresponding value
plt.bar(x, y, color = 'r', align = 'center')
plt.bar(x2, y2, color = 'g', align = 'center')
plt.title('Bar graph')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()
【 Running results 】
Scatter plot
from matplotlib import pyplot as plt
import numpy as np
n = 1024
X = np.random.normal(0,30,n)
Y = np.random.normal(0,30,n)
plt.title('scale:30')
plt.scatter(X,Y,color='red')
plt.show()
【 Running results 】 The following are the variances 5,10,15,20,25,30 The scatter diagram of 
Contour map
from matplotlib import pyplot as plt
import numpy as np
def f(x,y):return(1-x/2+x**5+y**3)*np.exp(-x**2-y**2) # Contour model
n = 256 #n It can be understood as the smoothness of the curve
x = np.linspace(-3,3,n)
y = np.linspace(-3,3,n)
X,Y = np.meshgrid(x,y)
plt.contourf(X,Y,f(X,Y),8,alpha=.75,cmap='jet')
C = plt.contour(X,Y,f(X,Y),8,color='black',linewidth=.5)
plt.show()
【 Running results 】
grayscale
from matplotlib import pyplot as plt
import numpy as np
def f(x,y):return(1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 10
x = np.linspace(-3,3,4*n)
y = np.linspace(-3,3,4*n)
X,Y = np.meshgrid(x,y)
plt.imshow(f(X,Y))
plt.show()
【 Running results 】
The pie chart
from matplotlib import pyplot as plt
import numpy as np
n = 20 #n Determines how many partitions there are , The code shows 20 Zones
Z = np.random.uniform(0,1,n)
plt.pie(Z)
plt.show()
【 Running results 】
Measurement field diagram
from matplotlib import pyplot as plt
import numpy as np
n = 8
X,Y = np.mgrid[0:n,0:n]
plt.quiver(X,Y,color="red")
plt.show()
【 Running results 】
Polar chart
from matplotlib import pyplot as plt
import numpy as np
plt.figure(figsize=(4,4))
ax1 = plt.subplot(111,projection='polar')
ax1.set_title('spot fish')
ax1.set_rlim(0,12)
data = np.random.randint(1,10,10)
theta = np.arange(0,2*np.pi,2*np.pi/10)
bar = ax1.bar(theta,data,alpha=0.5)
for r,bar in zip(data,bar):
bar.set_facecolor(plt.cm.jet(r/10.))
plt.show()
【 Running results 】
3D chart
边栏推荐
猜你喜欢
随机推荐
刻录光盘的程序步骤
Image binarization
决策树与随机森林
带你解决哈希冲突,并实现一个简单hash表,
深度学习之Numpy篇
Map and filter methods for processing scarce arrays
Please advise tonghuashun which securities firm to choose for opening an account? Is it safe to open an account online now?
同花顺开户怎么样安全吗?怎么炒股开户
MYSQL的下载与配置 mysql远程操控
MySQL的MVCC机制详解
RSA encryption and decryption details
Leetcode 128 longest continuous sequence
vutils.make_grid()与黑白图像有关的一个小体会
Static registration and dynamic registration of JNI
Map and list < map > transfer to corresponding objects
Bayesian network explanation
Decompilation of zero time technology smart contract security series articles
Determine whether a sequence is a stack pop-up sequence
贝叶斯网络详解
JVM入個門(1)








