当前位置:网站首页>ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
2022-07-07 00:33:00 【一个处女座的程序猿】
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
目录
基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
相关文章
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
ML之shap:基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略实现
基于adult人口普查收入二分类预测数据集(预测年收入是否超过50k)利用shap决策图结合LightGBM模型实现异常值检测案例之详细攻略
# 1、定义数据集
| age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | salary |
| 39 | State-gov | 77516 | Bachelors | 13 | Never-married | Adm-clerical | Not-in-family | White | Male | 2174 | 0 | 40 | United-States | <=50K |
| 50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
| 38 | Private | 215646 | HS-grad | 9 | Divorced | Handlers-cleaners | Not-in-family | White | Male | 0 | 0 | 40 | United-States | <=50K |
| 53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
| 28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
| 37 | Private | 284582 | Masters | 14 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 0 | 0 | 40 | United-States | <=50K |
| 49 | Private | 160187 | 9th | 5 | Married-spouse-absent | Other-service | Not-in-family | Black | Female | 0 | 0 | 16 | Jamaica | <=50K |
| 52 | Self-emp-not-inc | 209642 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 45 | United-States | >50K |
| 31 | Private | 45781 | Masters | 14 | Never-married | Prof-specialty | Not-in-family | White | Female | 14084 | 0 | 50 | United-States | >50K |
| 42 | Private | 159449 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 5178 | 0 | 40 | United-States | >50K |
# 2、数据集预处理
# 2.1、入模特征初步筛选
df.columns
14
# 2.2、目标特征二值化
# 2.3、类别型特征编码数字化
| age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | salary | |
| 0 | 39 | 7 | 13 | 4 | 1 | 1 | 4 | 1 | 2174 | 0 | 40 | 39 | 0 |
| 1 | 50 | 6 | 13 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 13 | 39 | 0 |
| 2 | 38 | 4 | 9 | 0 | 6 | 1 | 4 | 1 | 0 | 0 | 40 | 39 | 0 |
| 3 | 53 | 4 | 7 | 2 | 6 | 0 | 2 | 1 | 0 | 0 | 40 | 39 | 0 |
| 4 | 28 | 4 | 13 | 2 | 10 | 5 | 2 | 0 | 0 | 0 | 40 | 5 | 0 |
| 5 | 37 | 4 | 14 | 2 | 4 | 5 | 4 | 0 | 0 | 0 | 40 | 39 | 0 |
| 6 | 49 | 4 | 5 | 3 | 8 | 1 | 2 | 0 | 0 | 0 | 16 | 23 | 0 |
| 7 | 52 | 6 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 45 | 39 | 1 |
| 8 | 31 | 4 | 14 | 4 | 10 | 1 | 4 | 0 | 14084 | 0 | 50 | 39 | 1 |
| 9 | 42 | 4 | 13 | 2 | 4 | 0 | 4 | 1 | 5178 | 0 | 40 | 39 | 1 |
# 2.4、分离特征与标签
| age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country |
| 39 | 7 | 13 | 4 | 1 | 1 | 4 | 1 | 2174 | 0 | 40 | 39 |
| 50 | 6 | 13 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 13 | 39 |
| 38 | 4 | 9 | 0 | 6 | 1 | 4 | 1 | 0 | 0 | 40 | 39 |
| 53 | 4 | 7 | 2 | 6 | 0 | 2 | 1 | 0 | 0 | 40 | 39 |
| 28 | 4 | 13 | 2 | 10 | 5 | 2 | 0 | 0 | 0 | 40 | 5 |
| 37 | 4 | 14 | 2 | 4 | 5 | 4 | 0 | 0 | 0 | 40 | 39 |
| 49 | 4 | 5 | 3 | 8 | 1 | 2 | 0 | 0 | 0 | 16 | 23 |
| 52 | 6 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 45 | 39 |
| 31 | 4 | 14 | 4 | 10 | 1 | 4 | 0 | 14084 | 0 | 50 | 39 |
| 42 | 4 | 13 | 2 | 4 | 0 | 4 | 1 | 5178 | 0 | 40 | 39 |
| salary |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |
| 1 |
| 1 |
#3、模型训练与推理
# 3.1、数据集切分
X_test
| age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | |
| 1342 | 47 | 3 | 10 | 0 | 1 | 1 | 4 | 1 | 0 | 0 | 40 | 35 |
| 1338 | 71 | 3 | 13 | 0 | 13 | 3 | 4 | 0 | 2329 | 0 | 16 | 35 |
| 189 | 58 | 6 | 16 | 2 | 10 | 0 | 4 | 1 | 0 | 0 | 1 | 35 |
| 1332 | 23 | 3 | 9 | 4 | 7 | 1 | 2 | 1 | 0 | 0 | 35 | 35 |
| 1816 | 46 | 2 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 1902 | 40 | 35 |
| 1685 | 37 | 3 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 1902 | 45 | 35 |
| 657 | 34 | 3 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 0 | 45 | 35 |
| 1846 | 21 | 0 | 10 | 4 | 0 | 3 | 4 | 0 | 0 | 0 | 40 | 35 |
| 554 | 33 | 1 | 11 | 0 | 3 | 4 | 2 | 0 | 0 | 0 | 40 | 35 |
| 1963 | 49 | 3 | 13 | 2 | 12 | 0 | 4 | 1 | 0 | 0 | 50 | 35 |
# 3.2、模型建立并训练
params = {
"max_bin": 512, "learning_rate": 0.05,
"boosting_type": "gbdt", "objective": "binary",
"metric": "binary_logloss", "verbose": -1,
"min_data": 100, "random_state": 1,
"boost_from_average": True, "num_leaves": 10 }
LGBMC = lgb.train(params, lgbD_train, 10000,
valid_sets=[lgbD_test],
early_stopping_rounds=50,
verbose_eval=1000)# 3.3、模型预测
| age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | y_test_predi | y_test | |
| 1342 | 47 | 3 | 10 | 0 | 1 | 1 | 4 | 1 | 0 | 0 | 40 | 35 | 0.045225575 | 0 |
| 1338 | 71 | 3 | 13 | 0 | 13 | 3 | 4 | 0 | 2329 | 0 | 16 | 35 | 0.074799172 | 0 |
| 189 | 58 | 6 | 16 | 2 | 10 | 0 | 4 | 1 | 0 | 0 | 1 | 35 | 0.30014332 | 1 |
| 1332 | 23 | 3 | 9 | 4 | 7 | 1 | 2 | 1 | 0 | 0 | 35 | 35 | 0.003966427 | 0 |
| 1816 | 46 | 2 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 1902 | 40 | 35 | 0.363861294 | 0 |
| 1685 | 37 | 3 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 1902 | 45 | 35 | 0.738628671 | 1 |
| 657 | 34 | 3 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 0 | 45 | 35 | 0.376412174 | 0 |
| 1846 | 21 | 0 | 10 | 4 | 0 | 3 | 4 | 0 | 0 | 0 | 40 | 35 | 0.002309884 | 0 |
| 554 | 33 | 1 | 11 | 0 | 3 | 4 | 2 | 0 | 0 | 0 | 40 | 35 | 0.060345836 | 1 |
| 1963 | 49 | 3 | 13 | 2 | 12 | 0 | 4 | 1 | 0 | 0 | 50 | 35 | 0.703506366 | 1 |
# 4、利用shap决策图进行异常值检测
# 4.1、原始数据和预处理后的数据各采样一小部分样本
# 4.2、创建Explainer并计算SHAP值
shap2exp.values.shape (100, 12, 2)
[[[-5.97178729e-01 5.97178729e-01]
[-5.18879297e-03 5.18879297e-03]
[ 1.70566444e-01 -1.70566444e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 6.58794799e-02 -6.58794799e-02]
[ 0.00000000e+00 0.00000000e+00]]
[[-4.45574118e-01 4.45574118e-01]
[-1.00665452e-03 1.00665452e-03]
[-8.12237233e-01 8.12237233e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 8.56381961e-01 -8.56381961e-01]
[ 0.00000000e+00 0.00000000e+00]]
[[-3.87412165e-01 3.87412165e-01]
[ 1.52848351e-01 -1.52848351e-01]
[-1.02755954e+00 1.02755954e+00]
...
[ 0.00000000e+00 0.00000000e+00]
[ 1.10240434e+00 -1.10240434e+00]
[ 0.00000000e+00 0.00000000e+00]]
...
[[-5.28928223e-01 5.28928223e-01]
[ 7.14116015e-03 -7.14116015e-03]
[-8.82241728e-01 8.82241728e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 7.47521189e-02 -7.47521189e-02]
[ 0.00000000e+00 0.00000000e+00]]
[[ 2.20002984e+00 -2.20002984e+00]
[ 7.75916086e-03 -7.75916086e-03]
[ 3.95152810e-01 -3.95152810e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 1.52566789e-01 -1.52566789e-01]
[ 0.00000000e+00 0.00000000e+00]]
[[-8.28965461e-01 8.28965461e-01]
[-4.43687947e-02 4.43687947e-02]
[ 3.37305776e-01 -3.37305776e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 8.26477289e-03 -8.26477289e-03]
[ 0.00000000e+00 0.00000000e+00]]]
shap2array.shape (100, 12)
LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray
[[ 5.97178729e-01 5.18879297e-03 -1.70566444e-01 ... 0.00000000e+00
-6.58794799e-02 0.00000000e+00]
[ 4.45574118e-01 1.00665452e-03 8.12237233e-01 ... 0.00000000e+00
-8.56381961e-01 0.00000000e+00]
[ 3.87412165e-01 -1.52848351e-01 1.02755954e+00 ... 0.00000000e+00
-1.10240434e+00 0.00000000e+00]
...
[ 5.28928223e-01 -7.14116015e-03 8.82241728e-01 ... 0.00000000e+00
-7.47521189e-02 0.00000000e+00]
[-2.20002984e+00 -7.75916086e-03 -3.95152810e-01 ... 0.00000000e+00
-1.52566789e-01 0.00000000e+00]
[ 8.28965461e-01 4.43687947e-02 -3.37305776e-01 ... 0.00000000e+00
-8.26477289e-03 0.00000000e+00]]
mode_exp_value: -1.9982244224656025# 4.3、shap决策图可视化
# 将决策图叠加在一起有助于根据shap定位异常值,即偏离密集群处的样本

边栏推荐
- 集群、分布式、微服务的区别和介绍
- Three level menu data implementation, nested three-level menu data
- R语言【逻辑控制】【数学运算】
- Taobao Commodity details page API interface, Taobao Commodity List API interface, Taobao Commodity sales API interface, Taobao app details API interface, Taobao details API interface
- 【日常训练--腾讯精选50】235. 二叉搜索树的最近公共祖先
- 三级菜单数据实现,实现嵌套三级菜单数据
- PTA 天梯赛练习题集 L2-003 月饼 测试点2,测试点3分析
- 分布式事务介绍
- ForkJoin最全详解(从原理设计到使用图解)
- Mybaits multi table query (joint query, nested query)
猜你喜欢

基于NCF的多模块协同实例

bat 批示处理详解

Dynamic memory management
![Paper reading [semantic tag enlarged xlnv model for video captioning]](/img/e3/633f6aac7a51ad7b3dc0e45dbe1f60.png)
Paper reading [semantic tag enlarged xlnv model for video captioning]

OpenSergo 即将发布 v1alpha1,丰富全链路异构架构的服务治理能力

nVisual网络可视化

什么是消息队列?

Message queue: how to deal with message backlog?

Différenciation et introduction des services groupés, distribués et microservices

常用消息队列有哪些?
随机推荐
nodejs获取客户端ip
Paper reading [MM21 pre training for video understanding challenge:video captioning with pre training techniqu]
Randomly generate session_ id
软件测试面试技巧
Realize GDB remote debugging function between different network segments
关于服装ERP,你知道多少?
zabbix_ Get test database failed
淘寶商品詳情頁API接口、淘寶商品列錶API接口,淘寶商品銷量API接口,淘寶APP詳情API接口,淘寶詳情API接口
nVisual网络可视化
目标检测中的损失函数与正负样本分配:RetinaNet与Focal loss
三级菜单数据实现,实现嵌套三级菜单数据
5阶多项式轨迹
Interview questions and salary and welfare of Shanghai byte
谈fpga和asic的区别
如何提高网站权重
mac版php装xdebug环境(m1版)
Flinksql read / write PgSQL
Go 语言的 Context 详解
Industrial Finance 3.0: financial technology of "dredging blood vessels"
Paper reading [open book video captioning with retrieve copy generate network]