当前位置:网站首页>WebService出错 Maximum message size quota for incoming messages (65536) has been exceeded.已超过传入消息(655
WebService出错 Maximum message size quota for incoming messages (65536) has been exceeded.已超过传入消息(655
2022-07-28 05:23:00 【海乐学习】
WebService应用中如果收到的信息非常大时出错。
1:Maximum message size quota for incoming messages (65536) has been exceeded.已超过传入消息(65536)的最大消息大小配额。若要增加配额,请使用相应绑定元素上的 MaxReceivedMessageSize 属性。
说明: 执行当前 Web 请求期间,出现未处理的异常。请检查堆栈跟踪信息,以了解有关该错误以及代码中导致错误的出处的详细信息。
异常详细信息: System.ServiceModel.QuotaExceededException: 已超过传入消息(65536)的最大消息大小配额。若要增加配额,请使用相应绑定元素上的 MaxReceivedMessageSize 属性。
解决办法:
修改Web.Config文件,其中的MaxReceivedMessageSize 可以改大一点,改成2147483647好了。
maxBufferSize="2147483647" maxBufferPoolSize="524288" maxReceivedMessageSize="2147483647"2:读取 XML 数据时,超出最大字符串内容长度配额 (8192)。通过更改在创建 XML 读取器时所使用的 XmlDictionaryReaderQuotas 对象的 MaxStringContentLength 属性,可增加此配额。 第 211 行,位置为 394。
解决办法:
也是修改Web.Config中的MaxStringContentLength ,这是有些数据比较长的时候出现这个问题,改大一点就可以了吧。
<readerQuotas maxDepth="64" maxStringContentLength="8192000" maxArrayLength="16384000"
maxBytesPerRead="4096000" maxNameTableCharCount="16384000" />下面是完整的代码:
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="FileServiceSoapBinding" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
maxBufferSize="2147483647" maxBufferPoolSize="524288" maxReceivedMessageSize="2147483647"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="64" maxStringContentLength="8192000" maxArrayLength="16384000"
maxBytesPerRead="4096000" maxNameTableCharCount="16384000" />
<security mode="None">
<transport clientCredentialType="None" proxyCredentialType="None"
realm="" />
<message clientCredentialType="UserName" algorithmSuite="Default" />
</security>
</binding>
<binding name="FileServiceSoapBinding1" closeTimeout="00:01:00"
openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard"
maxBufferSize="2147483647" maxBufferPoolSize="524288" maxReceivedMessageSize="2147483647"
messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered"
useDefaultWebProxy="true">
<readerQuotas maxDepth="64" maxStringContentLength="8192000" maxArrayLength="16384000"
maxBytesPerRead="4096000" maxNameTableCharCount="16384000" />
<security mode="None">
<transport clientCredentialType="None" proxyCredentialType="None"
realm="" />
<message clientCredentialType="UserName" algorithmSuite="Default" />
</security>
</binding>
</basicHttpBinding>
</bindings>边栏推荐
- Nanjing University of Posts and Telecommunications CTF topic writeup (II) including topic address
- Classification of iris based on Neural Network
- 后门攻击与对抗样本攻击的比较研究
- The number of password errors during login is too many, and the user is blocked,
- Knowledge point 21 generic
- 硬件电路设计学习笔记1--温升设计
- Reinforcement learning - continuous control
- Never leave its origin - bluecms1.6 vulnerability of the controller's shooting range
- 5、 Video processing and GStreamer
- The difference and relation between TCP and UDP
猜你喜欢

压敏电阻设计参数及经典电路记录 硬件学习笔记5

What about the app store on wechat?

深度学习(自监督:CPC v2)——Data-Efficient Image Recognition with Contrastive Predictive Coding

一、语音合成与自回归模型

Protecting Against DNN Model Stealing Attacks 论文阅读心得

深度学习(二)走进机器学习与深度学习编程部分

深度学习(自监督:SimSiam)——Exploring Simple Siamese Representation Learning

The difference and relation between TCP and UDP

关于Fusion on Apple Silicon的谨慎猜测

Reading experience of protecting against DNN model steaming attacks
随机推荐
Summary of command injection bypass methods
What are the detailed steps of wechat applet development?
卷积神经网络
Overview of unconstrained low resolution face recognition I: data sets for low resolution face recognition
Distributed cluster architecture scenario optimization solution: distributed scheduling problem
Reversible digital watermarking method based on histogram modification
后门攻击与对抗样本攻击的比较研究
Deep learning (incremental learning) - iccv2022:continuous continuous learning
Reinforcement learning - continuous control
机器学习之聚类
Classification of iris based on Neural Network
Tensorflow2.1 basic concepts and common functions
Nsctf web Title writeup
《On Low-Resolution Face Recognition in the Wild:Comparisons and New Techniques》低分辨率人脸识别论文解读
USB Network Native Driver for ESXi更新到支持ESXi7.0 Update 2
Solution to the crash after setting up a cluster
Building neural network based on tensorflow
《AdaFace: Quality Adaptive Margin for Face Recognition》用于人脸识别的图像质量自适应边缘损失
深度学习——Patches Are All You Need
Prime_ Series range from detection to weight lifting