当前位置:网站首页>基于谱加权的波束方向图分析
基于谱加权的波束方向图分析
2022-06-10 18:06:00 【执手人间】
谱加权
本篇文章主要分析线列阵,下式给出了 u u u空间的波束方向图的推导公式
B u ( u ) = ω H v u ( u ) = e − j N − 1 2 2 π d λ u ∑ n = 0 N − 1 ω n ∗ e j n 2 π d λ u B_u(u)=\omega^Hv_u(u)=e^{-j\frac{N-1}{2}\frac{2\pi d}{\lambda}u}\sum_{n=0}^{N-1}\omega^*_ne^{jn\frac{2\pi d}{\lambda}u} Bu(u)=ωHvu(u)=e−j2N−1λ2πdun=0∑N−1ωn∗ejnλ2πdu
我们可以看到,波束方向图是权值与流形矢量的数量积,本篇文章主要分析不同的权值对波束方向图产生的不同影响,因为以下考虑的权值全部为实对称的,所以可以把n个阵元的位置用下面的标号代替 n ~ = n − N − 1 2 , n = 0 , 1 , ⋯ , N − 1 \tilde{n}=n-\frac{N-1}{2},n=0,1,\cdots,N-1 n~=n−2N−1,n=0,1,⋯,N−1
cosine加权
考虑N为奇数的情况,cosine的权值为 ω ( n ~ ) = s i n ( π 2 N ) c o s ( π n ~ N ) , − N − 1 2 ≤ n ~ ≤ N − 1 2 \omega(\tilde{n})=sin(\frac{\pi}{2N})cos(\pi\frac{\tilde{n}}{N}),-\frac{N-1}{2}\leq \tilde{n}\leq\frac{N-1}{2} ω(n~)=sin(2Nπ)cos(πNn~),−2N−1≤n~≤2N−1
其中 s i n ( π 2 N ) sin(\frac{\pi}{2N}) sin(2Nπ)是一个常数,目的是为了是的 B u ( 0 ) = 1 , 把 c o s i n e 写 成 指 数 形 式 , 逐 步 变 形 最 终 可 以 得 到 B_u(0)=1,把cosine写成指数形式,逐步变形最终可以得到 Bu(0)=1,把cosine写成指数形式,逐步变形最终可以得到
B u ( u ) = 1 2 s i n ( π 2 N ) { s i n ( N π 2 ( u − 1 N ) ) s i n ( π 2 ( u − 1 N ) ) + s i n ( N π 2 ( u + 1 N ) ) s i n ( π 2 ( u + 1 N ) ) } B_u(u)=\frac{1}{2}sin(\frac{\pi}{2N})\{\frac{sin(\frac{N\pi}{2}(u-\frac{1}{N}))}{sin(\frac{\pi}{2}(u-\frac{1}{N}))}+\frac{sin(\frac{N\pi}{2}(u+\frac{1}{N}))}{sin(\frac{\pi}{2}(u+\frac{1}{N}))}\} Bu(u)=21sin(2Nπ){ sin(2π(u−N1))sin(2Nπ(u−N1))+sin(2π(u+N1))sin(2Nπ(u+N1))}
我们可以直接利用计算机的计算能力,让其帮助我们处理权值与流形矢量的乘积,下面给出结果
我们可以看到旁瓣变得更低,而主瓣也变宽了,下面看一下各项数据的对比
matlab代码
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
W_unf = ones(1,M);
W_cos = cos(pi*D*2/M);
% Beampatterns
u = [0:0.001:1];
A = exp(-j*2*pi*D.'*u);
G_unf = W_unf*A;
G_unf = G_unf/(max(abs(G_unf)));
G_cos = W_cos*A;
G_cos = G_cos/(max(abs(G_cos)));
figure
% array only
clf
plot(u,20*log10(abs(G_unf)),'--')
hold on
plot(u,20*log10(abs(G_cos)),'-')
hold off
axis([0 1 -80 0])
%title([int2str(M) ' element array'])
h=legend('Uniform','Cosine');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
升余弦加权
权值 ω ( n ~ ) = c ( p ) ( p + ( 1 − p ) c o s ( π n ~ N ) ) , n ~ = − N − 1 2 , ⋯ , N − 1 2 \omega(\tilde n)=c(p)(p+(1-p)cos(\pi\frac{\tilde n}{N})),\tilde n =-\frac{N-1}{2}, \cdots,\frac{N-1}{2} ω(n~)=c(p)(p+(1−p)cos(πNn~)),n~=−2N−1,⋯,2N−1
其中 c ( p ) c(p) c(p)是一个常数,使得 B u ( 0 ) = 1 B_u(0)=1 Bu(0)=1 c ( p ) = p N + ( 1 − p ) 2 s i n ( π 2 N ) c(p)=\frac{p}{N}+\frac{(1-p)}{2}sin(\frac{\pi}{2N}) c(p)=Np+2(1−p)sin(2Nπ)
下图给出了 p = 0.31 , 0.17 , 0 p=0.31,0.17,0 p=0.31,0.17,0时的波束方向图

当 p p p减小时,第一旁瓣的高度减小,主波束宽度增加,所以我们已经可以使得HPBW变窄,并使得第一旁瓣比均匀分布的情况要低得多
matlab代码
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
p=[0;0.17;0.31;1];
W_rcos = p*ones(1,M)+(ones(4,1)-p)*cos(pi*D*2/M);
% Beampatterns
u = [0:0.001:1];
c=p+(ones(4,1)-p)*2/pi;
A = exp(-j*2*pi*D.'*u);
G_rcos = W_rcos*A;
for m=1:4
G_rcos(m,:) = G_rcos(m,:)/(max(abs(G_rcos(m,:))));
end
figure
clf
plot(u,20*log10(abs(G_rcos(3,:))),'-.')
hold on
plot(u,20*log10(abs(G_rcos(2,:))),'--')
plot(u,20*log10(abs(G_rcos(1,:))),'-')
hold off
axis([0 1 -80 0])
h=legend('{\it p}=0.31','{\it p}=0.17','{\it p}=0');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
cosinem加权
下面分析一系列cosine加权,形成 c o s m ( π n ~ N ) cos^m(\frac{\pi\tilde n}{N}) cosm(Nπn~),z阵列的权值为
ω m ( n ~ ) = { c 2 c o s 2 ( π n ~ N ) , m = 2 c 3 c o s 3 ( π n ~ N ) , m = 3 c 4 c o s 4 ( π n ~ N ) , m = 4 \omega_m(\tilde n) = \begin{cases} c_2cos^2(\frac{\pi\tilde n}{N}), & m=2 \\ c_3cos^3(\frac{\pi\tilde n}{N}), & m=3 \\ c_4cos^4(\frac{\pi\tilde n}{N}),& m=4 \\ \end{cases} ωm(n~)=⎩⎪⎨⎪⎧c2cos2(Nπn~),c3cos3(Nπn~),c4cos4(Nπn~),m=2m=3m=4
其中 c 2 , c 3 , c 4 c_2,c_3,c_4 c2,c3,c4仍旧是归一化常数
下图给出波束方向图,当m增加时,旁瓣减小,但主波束变宽

matlab代码
clear all
close all
M=11;
d=0.5; % sensor spacing wrt wavelength
D = [-(M-1)/2:1:(M-1)/2]*d; % sensor positions in wavelengths
% weights, normalized so that w(0)=1
W_cos2 = cos(pi*D*2/M).^2;
W_cos3 = cos(pi*D*2/M).^3;
W_cos4 = cos(pi*D*2/M).^4;
% Beampatterns
u = [0:0.001:1];
A = exp(-j*2*pi*D.'*u);
G_cos2 = W_cos2*A;
G_cos2 = G_cos2/(max(abs(G_cos2)));
G_cos3 = W_cos3*A;
G_cos3 = G_cos3/(max(abs(G_cos3)));
G_cos4 = W_cos4*A;
G_cos4 = G_cos4/(max(abs(G_cos4)));
figure
clf
plot(u,20*log10(abs(G_cos2)),'--')
hold on
plot(u,20*log10(abs(G_cos3)),'-')
plot(u,20*log10(abs(G_cos4)),'-.')
hold off
axis([0 1 -80 0])
h=legend('{\it m}=2','{\it m}=3','{\it m}=4');
set(h,'Fontsize',12)
xlabel('\it u','Fontsize',14)
ylabel('Beam pattern (dB)','Fontsize',14)
总结
以上分析了cosine加权及其的几种变形,总体而言,cosine加权使得主瓣的宽度变宽但使得第一旁瓣的高度变低,且在升余弦加权中,p越小这种趋势越明显,同样在cosine的m次方加权中,m越大越明显。
边栏推荐
- Db2 SQL PL的锚点类型和行数据类型
- muduo源码剖析——以三个切片浅析muduo库代码设计的严谨性、高效性与灵活性
- TSMC liudeyin: do not worry about semiconductor inventory correction and cooperation between the United States, Japan and South Korea. This year's performance will increase by 30%!
- [kuangbin] topic 22 interval DP
- [kuangbin]专题十二 基础DP1
- Db2 SQL PL的动态SQL
- SaleSmartly | 再添新渠道Slack,助你拉近客户关系
- Common methods of stream flow lambder
- [QNX hypervisor 2.2 user manual] 3.2.2 VM configuration example
- Adobe Premiere基础-时间重映射(十)
猜你喜欢

Research on next generation distributed file system

数据可视化入门学习,要警惕陷阱误区,把握关键节点

二叉树之Morris遍历

The value of Bi in the enterprise: business analysis and development decision

Some summary about YUV format

锐捷x32pro刷openwrt开启无线160MHz

干货 | 一文搞定 uiautomator2 自动化测试工具使用

当前有哪些主流的全光技术方案?-下篇

Metadata management, the basic construction of enterprises in the digital era

低碳数据中心建设思路及未来趋势
随机推荐
HelloWorld example of TestNG and how to run it from the command line
vcsa7u3c安装教程
阅读micropyton源码-添加C扩展类模块(4)
Anchor type and row data type of DB2 SQL pl
In the introductory study of data visualization, we should be alert to pitfalls and misunderstandings and grasp key nodes
两部门发文明确校外培训机构消防安全条件
AGI基础,不确定性推理,主观逻辑一书ppt1
换根呀呀啊呀
ADS,AXD基本使用说明
记录一个超级乌龙的智障bug,也许能帮助类似我的白吃
如何设置 SaleSmartly 以进行 Google Analytics(分析)跟踪
Three ways generated by stream lambda
leecode27,977-双指针法
Building smart community Internet of things based on smart road lamp posts
VMware vCenter 各版本号对照表
【QNX Hypervisor 2.2 用户手册】3.2.1 VM配置语法
实时商业智能BI(二):合理的ETL架构设计实现准实时商业智能BI
VMware ESXi 各版本号对照表
Db2 SQL PL的锚点类型和行数据类型
"Digital transformation, data first", talk about how important data governance is to enterprises