当前位置:网站首页>[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
2022-07-03 06:56:00 【Programmer community】
List of articles
- One 、 Equivalence class
- Two 、 Examples of equivalence classes
- 3、 ... and 、 Equivalence properties
- Four 、 Quotient set
- 5、 ... and 、 Quotient set example 1
- 6、 ... and 、 Quotient set example 2
- 7、 ... and 、 Quotient set example 3
One 、 Equivalence class
R
R
R Relationship yes
A
A
A aggregate The binary relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ ,
about
A
A
A In the collection arbitrarily
x
x
x Elements ,
∀
x
∈
A
\forall x \in A
∀x∈A ,
x
x
x About
R
R
R Equivalence class of relation yes
[
x
]
R
=
{
y
∣
y
∈
A
∧
x
R
y
}
[x]_R = \{ y | y \in A \land xRy \}
[x]R={ y∣y∈A∧xRy} ;
x
x
x About
R
R
R Equivalence class of relation , Referred to as
x
x
x The equivalent class of , Write it down as
[
x
]
[x]
[x] ;
[
x
]
R
[x]_R
[x]R Express
x
x
x About
R
R
R Equivalence classes under relation ;
The equivalence class is composed of all And
x
x
x have
R
R
R Relational
y
y
y Set of components ;
If there is only one equivalence relation , Aforementioned
R
_R
R Subscripts can be omitted ,
[
x
]
R
[x]_R
[x]R It can be abbreviated as
[
x
]
[x]
[x]
Two 、 Examples of equivalence classes
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Above
3
3
3 Equivalent classes , There is a global relationship inside the equivalence class , There is no relationship between equivalence classes ;

3、 ... and 、 Equivalence properties
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ , For any
A
A
A The elements in the collection
x
,
y
x,y
x,y ,
∀
x
,
y
∈
A
\forall x,y \in A
∀x,y∈A , It has the following properties :
① The equivalent class of each element is not empty ;
[
x
]
R
≠
∅
[x]_R \not= \varnothing
[x]R=∅
② If there is a relationship between the two elements , Then their equivalent classes are equal ;
x
R
y
⇒
[
x
]
R
=
[
y
]
R
xRy \Rightarrow [x]_R = [y]_R
xRy⇒[x]R=[y]R
③ If there is no relationship between the two elements , Then their equivalence classes must not intersect ;
¬
x
R
y
⇒
[
x
]
R
∩
[
y
]
R
=
∅
\lnot xRy \Rightarrow [x]_R \cap [y]_R = \varnothing
¬xRy⇒[x]R∩[y]R=∅
④ Union of all equivalence classes , Is the original set
A
A
A ;
⋃
{
[
x
]
R
∣
x
∈
A
}
=
A
\bigcup \{ [x]_R | x \in A \} = A
⋃{ [x]R∣x∈A}=A
Four 、 Quotient set
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty
A
A
A aggregate About
R
R
R Relationship The quotient set of yes
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
abbreviation :
A
A
A The quotient set of
The essence of quotient set : Quotient set The essence is a aggregate , The elements in the set are Equivalence class , This equivalence class is based on
R
R
R Relational ;
5、 ... and 、 Quotient set example 1
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Quotient set definition :
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
A
A
A Set about
R
R
R The quotient set of relation is :
A
/
R
=
{
{
1
,
4
}
,
{
2
,
5
,
8
}
,
{
3
}
}
A/R = \{ \{ 1, 4 \} , \{ 2, 5, 8 \} , \{ 3 \} \}
A/R={ { 1,4},{ 2,5,8},{ 3}}
6、 ... and 、 Quotient set example 2
aggregate
A
=
{
a
1
,
a
2
,
⋯
,
a
n
}
A = \{ a_1 , a_2 , \cdots , a_n \}
A={ a1,a2,⋯,an} The equivalence relation on has :
I
A
I_A
IA Identity ,
E
A
E_A
EA Global relations ;
1. Identity
I
A
I_A
IA : Each element in the set is an equivalent class ; classification The smallest particle size ;
A
A
A Set about Identity
I
A
I_A
IA The quotient set of :
A
/
I
A
=
{
{
a
1
}
,
{
a
2
}
,
⋯
,
{
a
n
}
}
A/I_A = \{ \{ a_1 \} , \{ a_2 \} , \cdots , \{ a_n \} \}
A/IA={ { a1},{ a2},⋯,{ an}}
2. Global relations
E
A
E_A
EA : In the collection All elements are equivalent classes ; Put all the elements together , Every element has a relationship with each other ; This classification The coarsest particle size ;
A
A
A Set about Global relations
E
A
E_A
EA The quotient set of :
A
/
E
A
=
{
{
a
1
,
a
2
,
⋯
,
a
n
}
}
A/E_A = \{ \{ a_1 ,a_2 , \cdots , a_n \} \}
A/EA={ { a1,a2,⋯,an}}
3.
R
i
j
R_{ij}
Rij Relationship : Identity And
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
<a_i , a_j> , <a_j , a_i>
<ai,aj>,<aj,ai> Union ; The relationship is introspect , symmetry , Delivered , It's equivalence ;
R
i
j
R_{ij}
Rij Relationship description :
R
i
j
=
I
A
∪
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
R_{ij} = I_A \cup \{ <a_i , a_j> , <a_j , a_i> \}
Rij=IA∪{ <ai,aj>,<aj,ai>}
A
A
A Set about Global relations
R
i
j
R_{ij}
Rij The quotient set of :
- take
a
i
,
a
j
a_i, a_j
ai,aj In an equivalent class
{
a
i
,
a
j
}
\{ a_i , a_j \}
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
\{ <a_i , a_j> , <a_j , a_i> \}
{ <ai,aj>,<aj,ai>}
{ ai,aj}, Corresponding
- Put in the collection except
a
i
,
a
j
a_i, a_j
I
A
I_A
IA ,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
\{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \}
{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an}
ai,aj Other elements besides are divided into a separate category , Corresponding
A
/
R
i
j
=
{
{
a
i
,
a
j
}
,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
,
}
A/R_{ij} = \{ \{ a_i , a_j \} , \{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \} , \}
A/Rij={ { ai,aj},{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an},}
4. Empty relation
∅
\varnothing
∅ It's not a collection
A
A
A The equivalence relationship on , Empty relationships are not reflexive ;
7、 ... and 、 Quotient set example 3
aggregate
A
=
{
a
,
b
,
c
}
A = \{ a , b , c \}
A={ a,b,c} All equivalence relations on : share Five equivalence relations , Only Three elements , On the basis of identity , Consider two elements Between 2 In one direction Ordered pair composition The relationship between ;
①
R
1
=
I
A
R_1 = I_A
R1=IA Identity : The corresponding quotient set is :
A
/
I
A
=
{
{
a
}
,
{
b
}
,
{
c
}
}
A/I_A = \{ \{ a \} , \{ b \} , \{ c \} \}
A/IA={ { a},{ b},{ c}}
②
R
2
=
E
A
R_2 = E_A
R2=EA Global relations : The corresponding quotient set is :
A
/
E
A
=
{
{
a
,
b
,
c
}
}
A/E_A = \{ \{ a , b , c \} \}
A/EA={ { a,b,c}}
③
R
3
=
I
A
∪
{
<
b
,
c
>
,
<
c
,
b
>
}
R_3 = I_A \cup \{ <b,c>, <c,b> \}
R3=IA∪{ <b,c>,<c,b>} Relationship : The corresponding quotient set is :
A
/
R
3
=
{
{
a
}
,
{
b
,
c
}
}
A/R_3 = \{ \{ a \} , \{ b , c \} \}
A/R3={ { a},{ b,c}}
④
R
4
=
I
A
∪
{
<
a
,
c
>
,
<
c
,
a
>
}
R_4 = I_A \cup \{ <a,c>, <c,a> \}
R4=IA∪{ <a,c>,<c,a>} Relationship : The corresponding quotient set is :
A
/
R
4
=
{
{
b
}
,
{
a
,
c
}
}
A/R_4= \{ \{ b \} , \{ a , c \} \}
A/R4={ { b},{ a,c}}
⑤
R
5
=
I
A
∪
{
<
a
,
b
>
,
<
b
,
a
>
}
R_5 = I_A \cup \{ <a,b>, <b,a> \}
R5=IA∪{ <a,b>,<b,a>} Relationship : The corresponding quotient set is :
A
/
R
5
=
{
{
c
}
,
{
a
,
b
}
}
A/R_5 = \{ \{ c \} , \{ a , b \} \}
A/R5={ { c},{ a,b}}
边栏推荐
- 【code】偶尔取值、判空、查表、验证等
- Tool class static method calls @autowired injected service
- 服务器如何设置多界面和装IIS呢?甜甜给你解答!
- [attribute comparison] defer and async
- 2022 East China Normal University postgraduate entrance examination machine test questions - detailed solution
- opencv
- [Code] occasionally take values, judge blanks, look up tables, verify, etc
- 这两种驱蚊成份对宝宝有害,有宝宝的家庭,选购驱蚊产品要注意
- Dbnet: real time scene text detection with differentiable binarization
- Realize PDF to picture conversion with C #
猜你喜欢

卡特兰数(Catalan)的应用场景

(翻译)异步编程:Async/Await在ASP.NET中的介绍

Practice of enterprise ab/testing platform

golang操作redis:写入、读取kv数据

Summary of remote connection of MySQL

How to migrate or replicate VMware virtual machine systems

100000 bonus is divided up. Come and meet the "sister who braves the wind and waves" among the winners

Liang Ning: 30 lectures on brain map notes for growth thinking

Reading notes of "learn to ask questions"

Integration test practice (1) theoretical basis
随机推荐
The essence of interview
Pits encountered in the use of El checkbox group
[Code] occasionally take values, judge blanks, look up tables, verify, etc
熊市里的大机构压力倍增,灰度、Tether、微策略等巨鲸会不会成为'巨雷'?
[C /vb.net] convert PDF to svg/image, svg/image to PDF
My 2020 summary "don't love the past, indulge in moving forward"
Jmeter+influxdb+grafana of performance tools to create visual real-time monitoring of pressure measurement -- problem record
How to migrate or replicate VMware virtual machine systems
Notes on the core knowledge of Domain Driven Design DDD
Software testing assignment - day 3
Practical plug-ins in idea
error C2017: 非法的转义序列
JMeter JSON extractor extracts two parameters at the same time
dataworks自定义函数开发环境搭建
The list of "I'm crazy about open source" was released in the first week, with 160 developers on the list
Unit test framework + Test Suite
opencv
(翻译)异步编程:Async/Await在ASP.NET中的介绍
[attribute comparison] defer and async
Simple understanding of bubble sorting