当前位置:网站首页>[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
2022-07-03 06:56:00 【Programmer community】
List of articles
- One 、 Equivalence class
- Two 、 Examples of equivalence classes
- 3、 ... and 、 Equivalence properties
- Four 、 Quotient set
- 5、 ... and 、 Quotient set example 1
- 6、 ... and 、 Quotient set example 2
- 7、 ... and 、 Quotient set example 3
One 、 Equivalence class
R
R
R Relationship yes
A
A
A aggregate The binary relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ ,
about
A
A
A In the collection arbitrarily
x
x
x Elements ,
∀
x
∈
A
\forall x \in A
∀x∈A ,
x
x
x About
R
R
R Equivalence class of relation yes
[
x
]
R
=
{
y
∣
y
∈
A
∧
x
R
y
}
[x]_R = \{ y | y \in A \land xRy \}
[x]R={ y∣y∈A∧xRy} ;
x
x
x About
R
R
R Equivalence class of relation , Referred to as
x
x
x The equivalent class of , Write it down as
[
x
]
[x]
[x] ;
[
x
]
R
[x]_R
[x]R Express
x
x
x About
R
R
R Equivalence classes under relation ;
The equivalence class is composed of all And
x
x
x have
R
R
R Relational
y
y
y Set of components ;
If there is only one equivalence relation , Aforementioned
R
_R
R Subscripts can be omitted ,
[
x
]
R
[x]_R
[x]R It can be abbreviated as
[
x
]
[x]
[x]
Two 、 Examples of equivalence classes
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Above
3
3
3 Equivalent classes , There is a global relationship inside the equivalence class , There is no relationship between equivalence classes ;
3、 ... and 、 Equivalence properties
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ , For any
A
A
A The elements in the collection
x
,
y
x,y
x,y ,
∀
x
,
y
∈
A
\forall x,y \in A
∀x,y∈A , It has the following properties :
① The equivalent class of each element is not empty ;
[
x
]
R
≠
∅
[x]_R \not= \varnothing
[x]R=∅
② If there is a relationship between the two elements , Then their equivalent classes are equal ;
x
R
y
⇒
[
x
]
R
=
[
y
]
R
xRy \Rightarrow [x]_R = [y]_R
xRy⇒[x]R=[y]R
③ If there is no relationship between the two elements , Then their equivalence classes must not intersect ;
¬
x
R
y
⇒
[
x
]
R
∩
[
y
]
R
=
∅
\lnot xRy \Rightarrow [x]_R \cap [y]_R = \varnothing
¬xRy⇒[x]R∩[y]R=∅
④ Union of all equivalence classes , Is the original set
A
A
A ;
⋃
{
[
x
]
R
∣
x
∈
A
}
=
A
\bigcup \{ [x]_R | x \in A \} = A
⋃{ [x]R∣x∈A}=A
Four 、 Quotient set
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty
A
A
A aggregate About
R
R
R Relationship The quotient set of yes
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
abbreviation :
A
A
A The quotient set of
The essence of quotient set : Quotient set The essence is a aggregate , The elements in the set are Equivalence class , This equivalence class is based on
R
R
R Relational ;
5、 ... and 、 Quotient set example 1
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Quotient set definition :
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
A
A
A Set about
R
R
R The quotient set of relation is :
A
/
R
=
{
{
1
,
4
}
,
{
2
,
5
,
8
}
,
{
3
}
}
A/R = \{ \{ 1, 4 \} , \{ 2, 5, 8 \} , \{ 3 \} \}
A/R={ { 1,4},{ 2,5,8},{ 3}}
6、 ... and 、 Quotient set example 2
aggregate
A
=
{
a
1
,
a
2
,
⋯
,
a
n
}
A = \{ a_1 , a_2 , \cdots , a_n \}
A={ a1,a2,⋯,an} The equivalence relation on has :
I
A
I_A
IA Identity ,
E
A
E_A
EA Global relations ;
1. Identity
I
A
I_A
IA : Each element in the set is an equivalent class ; classification The smallest particle size ;
A
A
A Set about Identity
I
A
I_A
IA The quotient set of :
A
/
I
A
=
{
{
a
1
}
,
{
a
2
}
,
⋯
,
{
a
n
}
}
A/I_A = \{ \{ a_1 \} , \{ a_2 \} , \cdots , \{ a_n \} \}
A/IA={ { a1},{ a2},⋯,{ an}}
2. Global relations
E
A
E_A
EA : In the collection All elements are equivalent classes ; Put all the elements together , Every element has a relationship with each other ; This classification The coarsest particle size ;
A
A
A Set about Global relations
E
A
E_A
EA The quotient set of :
A
/
E
A
=
{
{
a
1
,
a
2
,
⋯
,
a
n
}
}
A/E_A = \{ \{ a_1 ,a_2 , \cdots , a_n \} \}
A/EA={ { a1,a2,⋯,an}}
3.
R
i
j
R_{ij}
Rij Relationship : Identity And
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
<a_i , a_j> , <a_j , a_i>
<ai,aj>,<aj,ai> Union ; The relationship is introspect , symmetry , Delivered , It's equivalence ;
R
i
j
R_{ij}
Rij Relationship description :
R
i
j
=
I
A
∪
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
R_{ij} = I_A \cup \{ <a_i , a_j> , <a_j , a_i> \}
Rij=IA∪{ <ai,aj>,<aj,ai>}
A
A
A Set about Global relations
R
i
j
R_{ij}
Rij The quotient set of :
- take
a
i
,
a
j
a_i, a_j
ai,aj In an equivalent class
{
a
i
,
a
j
}
\{ a_i , a_j \}
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
\{ <a_i , a_j> , <a_j , a_i> \}
{ <ai,aj>,<aj,ai>}
{ ai,aj}, Corresponding
- Put in the collection except
a
i
,
a
j
a_i, a_j
I
A
I_A
IA ,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
\{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \}
{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an}
ai,aj Other elements besides are divided into a separate category , Corresponding
A
/
R
i
j
=
{
{
a
i
,
a
j
}
,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
,
}
A/R_{ij} = \{ \{ a_i , a_j \} , \{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \} , \}
A/Rij={ { ai,aj},{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an},}
4. Empty relation
∅
\varnothing
∅ It's not a collection
A
A
A The equivalence relationship on , Empty relationships are not reflexive ;
7、 ... and 、 Quotient set example 3
aggregate
A
=
{
a
,
b
,
c
}
A = \{ a , b , c \}
A={ a,b,c} All equivalence relations on : share Five equivalence relations , Only Three elements , On the basis of identity , Consider two elements Between 2 In one direction Ordered pair composition The relationship between ;
①
R
1
=
I
A
R_1 = I_A
R1=IA Identity : The corresponding quotient set is :
A
/
I
A
=
{
{
a
}
,
{
b
}
,
{
c
}
}
A/I_A = \{ \{ a \} , \{ b \} , \{ c \} \}
A/IA={ { a},{ b},{ c}}
②
R
2
=
E
A
R_2 = E_A
R2=EA Global relations : The corresponding quotient set is :
A
/
E
A
=
{
{
a
,
b
,
c
}
}
A/E_A = \{ \{ a , b , c \} \}
A/EA={ { a,b,c}}
③
R
3
=
I
A
∪
{
<
b
,
c
>
,
<
c
,
b
>
}
R_3 = I_A \cup \{ <b,c>, <c,b> \}
R3=IA∪{ <b,c>,<c,b>} Relationship : The corresponding quotient set is :
A
/
R
3
=
{
{
a
}
,
{
b
,
c
}
}
A/R_3 = \{ \{ a \} , \{ b , c \} \}
A/R3={ { a},{ b,c}}
④
R
4
=
I
A
∪
{
<
a
,
c
>
,
<
c
,
a
>
}
R_4 = I_A \cup \{ <a,c>, <c,a> \}
R4=IA∪{ <a,c>,<c,a>} Relationship : The corresponding quotient set is :
A
/
R
4
=
{
{
b
}
,
{
a
,
c
}
}
A/R_4= \{ \{ b \} , \{ a , c \} \}
A/R4={ { b},{ a,c}}
⑤
R
5
=
I
A
∪
{
<
a
,
b
>
,
<
b
,
a
>
}
R_5 = I_A \cup \{ <a,b>, <b,a> \}
R5=IA∪{ <a,b>,<b,a>} Relationship : The corresponding quotient set is :
A
/
R
5
=
{
{
c
}
,
{
a
,
b
}
}
A/R_5 = \{ \{ c \} , \{ a , b \} \}
A/R5={ { c},{ a,b}}
边栏推荐
- Ruoyi interface permission verification
- 如何迁移或复制VMware虚拟机系统
- Yolov2 learning and summary
- crontab定时任务
- Modify MySQL password
- [classes and objects] explain classes and objects in simple terms
- [Code] if (list! = null & list. Size() > 0) optimization, set empty judgment implementation method
- [vscode - vehicle plug-in reports an error] cannot find module 'xxx' or its corresponding type declarations Vetur(2307)
- [open source project recommendation colugomum] this group of undergraduates open source retail industry solutions based on the domestic deep learning framework paddlepadddle
- JMeter test result output
猜你喜欢
2022年华东师范大学计科考研复试机试题-详细题解
Machine learning | simple but feature standardization methods that can improve the effect of the model (comparison and analysis of robustscaler, minmaxscaler, standardscaler)
每日刷題記錄 (十一)
Software testing learning - day one
(翻译)异步编程:Async/Await在ASP.NET中的介绍
[vscode - vehicle plug-in reports an error] cannot find module 'xxx' or its corresponding type declarations Vetur(2307)
Pytest -- write and manage test cases
HMS core helps baby bus show high-quality children's digital content to global developers
IC_ EDA_ All virtual machine (rich Edition): questasim, vivado, VCs, Verdi, DC, Pt, spyglass, icc2, synthesize, innovative, ic617, mmsim, process library
Arctic code vault contributor
随机推荐
Climb movie paradise 2021 hot
Pytest -- write and manage test cases
机械观和系统观的科学思维方式各有什么特点和作用
Unittest attempt
Integration test practice (1) theoretical basis
mongodb
保险公司怎么查高血压?
The pressure of large institutions in the bear market has doubled. Will the giant whales such as gray scale, tether and micro strategy become 'giant thunder'?
【code】if (list != null && list.size() > 0)优化,集合判空实现方式
2022-06-23 VGMP-OSPF-域間安全策略-NAT策略(更新中)
Jenkins
Thoughts in Starbucks
Inno setup production and installation package
Application scenarios of Catalan number
【无标题】
2022年华东师范大学计科考研复试机试题-详细题解
[untitled] 8 simplified address book
Upgrade CentOS php7.2.24 to php7.3
Simple understanding of bubble sorting
[Code] if (list! = null & list. Size() > 0) optimization, set empty judgment implementation method