当前位置:网站首页>[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
[set theory] equivalence classes (concept of equivalence classes | examples of equivalence classes | properties of equivalence classes | quotient sets | examples of quotient sets)*
2022-07-03 06:56:00 【Programmer community】
List of articles
- One 、 Equivalence class
- Two 、 Examples of equivalence classes
- 3、 ... and 、 Equivalence properties
- Four 、 Quotient set
- 5、 ... and 、 Quotient set example 1
- 6、 ... and 、 Quotient set example 2
- 7、 ... and 、 Quotient set example 3
One 、 Equivalence class
R
R
R Relationship yes
A
A
A aggregate The binary relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ ,
about
A
A
A In the collection arbitrarily
x
x
x Elements ,
∀
x
∈
A
\forall x \in A
∀x∈A ,
x
x
x About
R
R
R Equivalence class of relation yes
[
x
]
R
=
{
y
∣
y
∈
A
∧
x
R
y
}
[x]_R = \{ y | y \in A \land xRy \}
[x]R={ y∣y∈A∧xRy} ;
x
x
x About
R
R
R Equivalence class of relation , Referred to as
x
x
x The equivalent class of , Write it down as
[
x
]
[x]
[x] ;
[
x
]
R
[x]_R
[x]R Express
x
x
x About
R
R
R Equivalence classes under relation ;
The equivalence class is composed of all And
x
x
x have
R
R
R Relational
y
y
y Set of components ;
If there is only one equivalence relation , Aforementioned
R
_R
R Subscripts can be omitted ,
[
x
]
R
[x]_R
[x]R It can be abbreviated as
[
x
]
[x]
[x]
Two 、 Examples of equivalence classes
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Above
3
3
3 Equivalent classes , There is a global relationship inside the equivalence class , There is no relationship between equivalence classes ;

3、 ... and 、 Equivalence properties
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty ,
A
≠
∅
A \not= \varnothing
A=∅ , For any
A
A
A The elements in the collection
x
,
y
x,y
x,y ,
∀
x
,
y
∈
A
\forall x,y \in A
∀x,y∈A , It has the following properties :
① The equivalent class of each element is not empty ;
[
x
]
R
≠
∅
[x]_R \not= \varnothing
[x]R=∅
② If there is a relationship between the two elements , Then their equivalent classes are equal ;
x
R
y
⇒
[
x
]
R
=
[
y
]
R
xRy \Rightarrow [x]_R = [y]_R
xRy⇒[x]R=[y]R
③ If there is no relationship between the two elements , Then their equivalence classes must not intersect ;
¬
x
R
y
⇒
[
x
]
R
∩
[
y
]
R
=
∅
\lnot xRy \Rightarrow [x]_R \cap [y]_R = \varnothing
¬xRy⇒[x]R∩[y]R=∅
④ Union of all equivalence classes , Is the original set
A
A
A ;
⋃
{
[
x
]
R
∣
x
∈
A
}
=
A
\bigcup \{ [x]_R | x \in A \} = A
⋃{ [x]R∣x∈A}=A
Four 、 Quotient set
R
R
R Relationship yes
A
A
A aggregate The equivalence relationship on ,
A
A
A Set is not empty
A
A
A aggregate About
R
R
R Relationship The quotient set of yes
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
abbreviation :
A
A
A The quotient set of
The essence of quotient set : Quotient set The essence is a aggregate , The elements in the set are Equivalence class , This equivalence class is based on
R
R
R Relational ;
5、 ... and 、 Quotient set example 1
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
8
}
A = \{1,2,3,4,5,8\}
A={ 1,2,3,4,5,8}
R
R
R Relationship yes aggregate
A
A
A Upper model
3
3
3 Same as relation
Symbolized as :
R
=
<
x
,
y
>
∣
x
,
y
∈
A
∧
x
≡
y
(
m
o
d
3
)
R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} }
R=<x,y>∣x,y∈A∧x≡y(mod3)
≡
\equiv
≡ The meaning of the symbol is Equal to
1
1
1 stay
R
R
R The equivalence class in relation is
{
1
,
4
}
\{ 1, 4 \}
{ 1,4}
2
2
2 stay
R
R
R The equivalence class in relation is
{
2
,
5
,
8
}
\{ 2, 5, 8 \}
{ 2,5,8}
3
3
3 stay
R
R
R The equivalence class in relation is
{
3
}
\{ 3 \}
{ 3}
Quotient set definition :
A
/
R
=
{
[
x
]
R
∣
x
∈
A
}
A/R = \{ [x]_R | x \in A \}
A/R={ [x]R∣x∈A}
A
A
A Set about
R
R
R The quotient set of relation is :
A
/
R
=
{
{
1
,
4
}
,
{
2
,
5
,
8
}
,
{
3
}
}
A/R = \{ \{ 1, 4 \} , \{ 2, 5, 8 \} , \{ 3 \} \}
A/R={ { 1,4},{ 2,5,8},{ 3}}
6、 ... and 、 Quotient set example 2
aggregate
A
=
{
a
1
,
a
2
,
⋯
,
a
n
}
A = \{ a_1 , a_2 , \cdots , a_n \}
A={ a1,a2,⋯,an} The equivalence relation on has :
I
A
I_A
IA Identity ,
E
A
E_A
EA Global relations ;
1. Identity
I
A
I_A
IA : Each element in the set is an equivalent class ; classification The smallest particle size ;
A
A
A Set about Identity
I
A
I_A
IA The quotient set of :
A
/
I
A
=
{
{
a
1
}
,
{
a
2
}
,
⋯
,
{
a
n
}
}
A/I_A = \{ \{ a_1 \} , \{ a_2 \} , \cdots , \{ a_n \} \}
A/IA={ { a1},{ a2},⋯,{ an}}
2. Global relations
E
A
E_A
EA : In the collection All elements are equivalent classes ; Put all the elements together , Every element has a relationship with each other ; This classification The coarsest particle size ;
A
A
A Set about Global relations
E
A
E_A
EA The quotient set of :
A
/
E
A
=
{
{
a
1
,
a
2
,
⋯
,
a
n
}
}
A/E_A = \{ \{ a_1 ,a_2 , \cdots , a_n \} \}
A/EA={ { a1,a2,⋯,an}}
3.
R
i
j
R_{ij}
Rij Relationship : Identity And
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
<a_i , a_j> , <a_j , a_i>
<ai,aj>,<aj,ai> Union ; The relationship is introspect , symmetry , Delivered , It's equivalence ;
R
i
j
R_{ij}
Rij Relationship description :
R
i
j
=
I
A
∪
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
R_{ij} = I_A \cup \{ <a_i , a_j> , <a_j , a_i> \}
Rij=IA∪{ <ai,aj>,<aj,ai>}
A
A
A Set about Global relations
R
i
j
R_{ij}
Rij The quotient set of :
- take
a
i
,
a
j
a_i, a_j
ai,aj In an equivalent class
{
a
i
,
a
j
}
\{ a_i , a_j \}
{
<
a
i
,
a
j
>
,
<
a
j
,
a
i
>
}
\{ <a_i , a_j> , <a_j , a_i> \}
{ <ai,aj>,<aj,ai>}
{ ai,aj}, Corresponding
- Put in the collection except
a
i
,
a
j
a_i, a_j
I
A
I_A
IA ,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
\{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \}
{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an}
ai,aj Other elements besides are divided into a separate category , Corresponding
A
/
R
i
j
=
{
{
a
i
,
a
j
}
,
{
a
1
}
,
⋯
,
{
a
i
−
1
}
,
{
a
i
+
1
}
,
⋯
,
{
a
j
−
1
}
,
{
a
j
+
1
}
,
⋯
,
a
n
}
,
}
A/R_{ij} = \{ \{ a_i , a_j \} , \{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \} , \}
A/Rij={ { ai,aj},{ a1},⋯,{ ai−1},{ ai+1},⋯,{ aj−1},{ aj+1},⋯,an},}
4. Empty relation
∅
\varnothing
∅ It's not a collection
A
A
A The equivalence relationship on , Empty relationships are not reflexive ;
7、 ... and 、 Quotient set example 3
aggregate
A
=
{
a
,
b
,
c
}
A = \{ a , b , c \}
A={ a,b,c} All equivalence relations on : share Five equivalence relations , Only Three elements , On the basis of identity , Consider two elements Between 2 In one direction Ordered pair composition The relationship between ;
①
R
1
=
I
A
R_1 = I_A
R1=IA Identity : The corresponding quotient set is :
A
/
I
A
=
{
{
a
}
,
{
b
}
,
{
c
}
}
A/I_A = \{ \{ a \} , \{ b \} , \{ c \} \}
A/IA={ { a},{ b},{ c}}
②
R
2
=
E
A
R_2 = E_A
R2=EA Global relations : The corresponding quotient set is :
A
/
E
A
=
{
{
a
,
b
,
c
}
}
A/E_A = \{ \{ a , b , c \} \}
A/EA={ { a,b,c}}
③
R
3
=
I
A
∪
{
<
b
,
c
>
,
<
c
,
b
>
}
R_3 = I_A \cup \{ <b,c>, <c,b> \}
R3=IA∪{ <b,c>,<c,b>} Relationship : The corresponding quotient set is :
A
/
R
3
=
{
{
a
}
,
{
b
,
c
}
}
A/R_3 = \{ \{ a \} , \{ b , c \} \}
A/R3={ { a},{ b,c}}
④
R
4
=
I
A
∪
{
<
a
,
c
>
,
<
c
,
a
>
}
R_4 = I_A \cup \{ <a,c>, <c,a> \}
R4=IA∪{ <a,c>,<c,a>} Relationship : The corresponding quotient set is :
A
/
R
4
=
{
{
b
}
,
{
a
,
c
}
}
A/R_4= \{ \{ b \} , \{ a , c \} \}
A/R4={ { b},{ a,c}}
⑤
R
5
=
I
A
∪
{
<
a
,
b
>
,
<
b
,
a
>
}
R_5 = I_A \cup \{ <a,b>, <b,a> \}
R5=IA∪{ <a,b>,<b,a>} Relationship : The corresponding quotient set is :
A
/
R
5
=
{
{
c
}
,
{
a
,
b
}
}
A/R_5 = \{ \{ c \} , \{ a , b \} \}
A/R5={ { c},{ a,b}}
边栏推荐
- HMS core helps baby bus show high-quality children's digital content to global developers
- Understand software testing
- Yolov3 learning notes
- Win 10 find the port and close the port
- Climb movie paradise 2021 hot
- 【code】if (list != null && list.size() > 0)优化,集合判空实现方式
- Simple understanding of bubble sorting
- Software testing learning - the next day
- My 2020 summary "don't love the past, indulge in moving forward"
- Centos切换安装mysql5.7和mysql8.0
猜你喜欢

Asynchronous programming: async/await in asp Net

Summary of remote connection of MySQL

DBNet:具有可微分二值化的实时场景文本检测

Jenkins

2022 East China Normal University postgraduate entrance examination machine test questions - detailed solution

On the practice of performance optimization and stability guarantee

Yolov1 learning notes

golang操作redis:写入、读取hash类型数据

New knowledge! The virtual machine network card causes your DNS resolution to slow down

IC_ EDA_ All virtual machine (rich Edition): questasim, vivado, VCs, Verdi, DC, Pt, spyglass, icc2, synthesize, innovative, ic617, mmsim, process library
随机推荐
Liang Ning: 30 lectures on brain map notes for growth thinking
Software testing assignment - the next day
Winter vacation work of software engineering practice
[leetcode] day93 - intersection of two arrays II
Learning notes -- principles and comparison of k-d tree and IKD tree
Scroll view specifies the starting position of the scrolling element
Software testing learning - day one
How matlab modifies default settings
2022 - 06 - 23 vgmp - OSPF - Inter - Domain Security Policy - nat Policy (Update)
Know flex box
Troubleshooting of high CPU load but low CPU usage
Software testing assignment - day 3
Asynchronous programming: async/await in asp Net
File links cannot be opened or downloaded in Google browser
POI excel percentage
How does the insurance company check hypertension?
In depth analysis of reentrantlock fair lock and unfair lock source code implementation
10000小時定律不會讓你成為編程大師,但至少是個好的起點
Daily question brushing record (11)
JMeter test result output