当前位置:网站首页>If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges
If xn > 0 and X (n+1) /xn > 1-1/n (n=1,2,...), Prove that the series Σ xn diverges
2022-06-27 07:50:00 【Fish in the deep sea (・ ω& lt;)*】
stem
if x n > 0 , And x n + 1 x n > 1 − 1 n ( n = 1 , 2 , . . . ) , Prove bright level Count ∑ n = 1 ∞ x n Hair scattered if x_n>0, And \frac{x_{n+1}}{x_n}>1-\frac{1}{n}\,\,\left( n=1,2,... \right) , Prove the series \sum_{n=1}^{\infty}{x_n} Divergence if xn>0, And xnxn+1>1−n1(n=1,2,...), Prove bright level Count n=1∑∞xn Hair scattered
answer
∵ x n + 1 x n > 1 − 1 n = n − 1 n \because \frac{x_{n+1}}{x_n}>1-\frac{1}{n}=\frac{n-1}{n} ∵xnxn+1>1−n1=nn−1
∴ x 3 x 2 > 1 2 , x 4 x 3 > 2 3 , . . . , x n x n − 1 > n − 2 n − 1 \therefore \frac{x_3}{x_2}>\frac{1}{2}\ ,\ \frac{x_4}{x_3}>\frac{2}{3}\ ,\ ...\ ,\ \frac{x_n}{x_{n-1}}>\frac{n-2}{n-1} ∴x2x3>21 , x3x4>32 , ... , xn−1xn>n−1n−2
∵ x n x n − 1 ⋅ x n − 1 x n − 2 ⋯ x 3 x 2 > n − 2 n − 1 ⋅ n − 3 n − 2 ⋯ 1 2 \because \frac{x_n}{x_{n-1}}\cdot \frac{x_{n-1}}{x_{n-2}}\cdots \frac{x_3}{x_2}>\frac{n-2}{n-1}\cdot \frac{n-3}{n-2}\cdots \frac{1}{2} ∵xn−1xn⋅xn−2xn−1⋯x2x3>n−1n−2⋅n−2n−3⋯21
∴ x n x 2 > 1 n − 1 ( n > 3 ) \therefore \frac{x_n}{x_2}>\frac{1}{n-1}\ \left( n>3 \right) ∴x2xn>n−11 (n>3)
∴ x n > x 2 ⋅ 1 n − 1 ( n > 3 ) \therefore x_n>x_2\cdot \frac{1}{n-1}\ \left( n>3 \right) ∴xn>x2⋅n−11 (n>3)
∴ ∑ n = 3 ∞ x n > x 2 ⋅ ∑ n = 2 ∞ 1 n \therefore \sum_{n=3}^{\infty}{x_n}>x_2\cdot \sum_{n=2}^{\infty}{\frac{1}{n}} ∴n=3∑∞xn>x2⋅n=2∑∞n1
because ∑ n = 2 ∞ 1 n Harmonic series , therefore ∑ n = 2 ∞ 1 n Divergence \text{ because }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Harmonic series , therefore }\sum_{n=2}^{\infty}{\frac{1}{n}}\text{ Divergence } because n=2∑∞n1 Harmonic series , therefore n=2∑∞n1 Divergence
Harmonic series is also called p = 1 p=1 p=1 At the time of the p Series , Proof see Integral convergence method of positive term series ,p Convergence and divergence of series
∴ ∑ n = 3 ∞ x n Divergence ⇒ ∑ n = 1 ∞ x n Divergence \therefore \sum_{n=3}^{\infty}{x_n}\text{ Divergence }\Rightarrow \sum_{n=1}^{\infty}{x_n}\text{ Divergence \ } ∴n=3∑∞xn Divergence ⇒n=1∑∞xn Divergence
边栏推荐
- 语音信号处理-概念(一):时谱图(横轴:时间;纵轴:幅值)、频谱图(横轴:频率;纵轴:幅值)--傅里叶变换-->时频谱图【横轴:时间;纵轴:频率;颜色深浅:幅值】
- JDBC读取Mysql数据列表
- JDBC transaction commit case
- MSSQL how to export and delete multi table data using statements
- 磁选机是什么?
- Preliminary understanding of C #
- Speech signal processing - concept (II): amplitude spectrum (STFT spectrum), Mel spectrum [the deep learning of speech mainly uses amplitude spectrum and Mel spectrum] [extracted with librosa or torch
- Speech signal processing - concept (I): time spectrum (horizontal axis: time; vertical axis: amplitude), spectrum (horizontal axis: frequency; vertical axis: amplitude) -- Fourier transform -- > time
- JS output shape
- Speech signal processing - concept (4): Fourier transform, short-time Fourier transform, wavelet transform
猜你喜欢

Index +sql exercise optimization

野風藥業IPO被終止:曾擬募資5.4億 實控人俞蘠曾進行P2P投資

JS, and output from small to large

js打印99乘法表

cookie加密7 fidder分析阶段

盲測調查顯示女碼農比男碼農更優秀

【13. 二进制中1的个数、位运算】

No matter how good LCD and OLED display technologies are, they cannot replace this ancient display nixie tube

JS find the number of all daffodils
![[Kevin's third play in a row] is rust really slower than C? Further analyze queen micro assessment](/img/ac/44e0ecd04fbea5efd39d2cc75dea59.jpg)
[Kevin's third play in a row] is rust really slower than C? Further analyze queen micro assessment
随机推荐
突破从0到1后,鲜花电商2.0时代怎么走?
【c ++ primer 笔记】第4章 表达式
c#的初步认识
闭包问题
淘宝虚拟产品开店教程之作图篇
R language analyzing wine data
cookie加密7 fidder分析阶段
Is futures reverse documentary reliable?
JDBC操作Mysql示例
Coal crusher
js用switch语句根据1-7输出对应英文星期几
移动安全工具-jad
[compilation principles] review outline of compilation principles of Shandong University
【批处理DOS-CMD命令-汇总和小结】-cmd的内部命令和外部命令怎么区分,CMD命令和运行(win+r)命令的区别,
「短视频」临夏消防救援支队开展消防安全培训授课
js用switch输出成绩是否合格
Implementation principle of similarity method in Oracle
盲測調查顯示女碼農比男碼農更優秀
基础知识 | js基础
剑指 Offer 07. 重建二叉树