当前位置:网站首页>【数据分析】基于MATLAB实现SVDD决策边界可视化

【数据分析】基于MATLAB实现SVDD决策边界可视化

2022-08-03 02:08:00 matlab_dingdang

 1 内容介绍

在现实世界中,万事万物都有着其特征,这样的特征或多或少、或重要或不重要。人们通过事物的特征可以确定其所属分类,但是当事物的特征都很多时,如果人们依靠传统的方法对事物进行分类就显得耗时耗力,并且分类的精确性不高。而分类作为一种预测模型,如果分类的精确性低或用时长,则这种预测将变得毫无价值。因此人们提出了各种分类模型来对事物进行预测,其中支持向量机和支持向量描述数据在对高维数据进行预测时有着一定的优势,并且根据不同的要求,对这两种算法的改进应用到了现实生活中的许多领域。 首先,本文研究了数据挖掘分类算法中的支持向量机的背景和理论,分析并总结了SVM各种改进方法的研究现状。​

2 仿真代码

function x_range = grid_range(x, varargin)
%{ 
% DESCRIPTION
Compute the range of grid 

      x_range = grid_range(x)
      x_range = grid_range(x, 'r', 0.5)
      x_range = grid_range(x, 'n', 200)
      x_range = grid_range(x, 'r', 0.5, 'n', 200)

INPUT
  x            Training inputs (N*1)
               N: number of samples
  r            Radio of expansion (0<r<1)
  n            Number of grids

OUTPUT
  x_range      range of grid

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

% Default Parameters setting
r = 0.5;           % radio of expansion (0<r<1)
n = 2*size(x, 1);  % number of grids

% Parameters setting
if ~rem(nargin, 2)
    error('Parameters to rvm_train should be pairs')
end
numParameters = (nargin-1)/2;
if numParameters ~= 0
    for i =1:numParameters
        Parameters = varargin{(i-1)*2+1};
        value    = varargin{(i-1)*2+2};
        switch Parameters
            %
            case 'r'
                r = value;
                %
            case 'n'
                n = value;
        end
    end
end

%
xlim_1 = min(x);
xlim_2 = max(x);

%  min
if xlim_1<0
    xlim_1 = xlim_1*(1+r);
else
    xlim_1 = xlim_1*(1-r);
end

% max
if xlim_2<0
    xlim_2 = xlim_2*(1-r);
else
    xlim_2 = xlim_2*(1+r);
end

% range of grid
x_range = linspace(xlim_1, xlim_2, n);
end

function [traindata, testdata, trainlabel, testlabel] = prepareData
%{ 
% DESCRIPTION
Prepare the data for SVDD_WOA

      [traindata, testdata, trainlabel, testlabel] = prepareData

OUTPUT
  traindata           Training data
  testdata            Testing data
  trainlabel          Training label
  trainlabel          Training label

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

load .\data\banana.mat

traindata(:, 1) = banana(1:2:500, 1);
traindata(:, 2) = banana(1:2:500, 2);

testdata(:, 1) = banana(501:2:1000, 1);
testdata(:, 2) = banana(501:2:1000, 2);

trainlabel = ones(size(traindata, 1), 1);
testlabel = -ones(size(testdata, 1), 1);
end

function [rho, X1, X2] = decision_boundary(model, traindata)

%{ 
% DESCRIPTION
Computation of decision boundary

      [rho, X1, X2] = decision_boundary(model, traindata)

INPUT
  model        SVDD model
               N: number of samples
  traindata    Training data


OUTPUT
  rho                 Bias term
  X1, X2              Grid range

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

% Compute the range of grid 
x1_range = grid_range(traindata(:, 1));
x2_range = grid_range(traindata(:, 2));

% grid 
[X1, X2] = meshgrid(x1_range, x2_range);
X_Grid = [X1(:), X2(:)];

% the grid label is only for the input of the function 'libsvmpredict'
grid_label = ones(size(X_Grid, 1), 1);

% Predict the label of each grid point
[~, ~, rho_0] = libsvmpredict(grid_label, X_Grid, model);
rho = reshape(rho_0, size(X1, 1), size(X1, 2));
end

function [traindata, testdata, trainlabel, testlabel] = prepareData
%{ 
% DESCRIPTION
Prepare the data for SVDD_WOA

      [traindata, testdata, trainlabel, testlabel] = prepareData

OUTPUT
  traindata           Training data
  testdata            Testing data
  trainlabel          Training label
  trainlabel          Training label

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

load .\data\banana.mat

traindata(:, 1) = banana(1:2:500, 1);
traindata(:, 2) = banana(1:2:500, 2);

testdata(:, 1) = banana(501:2:1000, 1);
testdata(:, 2) = banana(501:2:1000, 2);

trainlabel = ones(size(traindata, 1), 1);
testlabel = -ones(size(testdata, 1), 1);
end

 1 内容介绍

在现实世界中,万事万物都有着其特征,这样的特征或多或少、或重要或不重要。人们通过事物的特征可以确定其所属分类,但是当事物的特征都很多时,如果人们依靠传统的方法对事物进行分类就显得耗时耗力,并且分类的精确性不高。而分类作为一种预测模型,如果分类的精确性低或用时长,则这种预测将变得毫无价值。因此人们提出了各种分类模型来对事物进行预测,其中支持向量机和支持向量描述数据在对高维数据进行预测时有着一定的优势,并且根据不同的要求,对这两种算法的改进应用到了现实生活中的许多领域。 首先,本文研究了数据挖掘分类算法中的支持向量机的背景和理论,分析并总结了SVM各种改进方法的研究现状。​

2 仿真代码

function x_range = grid_range(x, varargin)
%{ 
% DESCRIPTION
Compute the range of grid 

      x_range = grid_range(x)
      x_range = grid_range(x, 'r', 0.5)
      x_range = grid_range(x, 'n', 200)
      x_range = grid_range(x, 'r', 0.5, 'n', 200)

INPUT
  x            Training inputs (N*1)
               N: number of samples
  r            Radio of expansion (0<r<1)
  n            Number of grids

OUTPUT
  x_range      range of grid

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

% Default Parameters setting
r = 0.5;           % radio of expansion (0<r<1)
n = 2*size(x, 1);  % number of grids

% Parameters setting
if ~rem(nargin, 2)
    error('Parameters to rvm_train should be pairs')
end
numParameters = (nargin-1)/2;
if numParameters ~= 0
    for i =1:numParameters
        Parameters = varargin{(i-1)*2+1};
        value    = varargin{(i-1)*2+2};
        switch Parameters
            %
            case 'r'
                r = value;
                %
            case 'n'
                n = value;
        end
    end
end

%
xlim_1 = min(x);
xlim_2 = max(x);

%  min
if xlim_1<0
    xlim_1 = xlim_1*(1+r);
else
    xlim_1 = xlim_1*(1-r);
end

% max
if xlim_2<0
    xlim_2 = xlim_2*(1-r);
else
    xlim_2 = xlim_2*(1+r);
end

% range of grid
x_range = linspace(xlim_1, xlim_2, n);
end

function [traindata, testdata, trainlabel, testlabel] = prepareData
%{ 
% DESCRIPTION
Prepare the data for SVDD_WOA

      [traindata, testdata, trainlabel, testlabel] = prepareData

OUTPUT
  traindata           Training data
  testdata            Testing data
  trainlabel          Training label
  trainlabel          Training label

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

load .\data\banana.mat

traindata(:, 1) = banana(1:2:500, 1);
traindata(:, 2) = banana(1:2:500, 2);

testdata(:, 1) = banana(501:2:1000, 1);
testdata(:, 2) = banana(501:2:1000, 2);

trainlabel = ones(size(traindata, 1), 1);
testlabel = -ones(size(testdata, 1), 1);
end

function [rho, X1, X2] = decision_boundary(model, traindata)

%{ 
% DESCRIPTION
Computation of decision boundary

      [rho, X1, X2] = decision_boundary(model, traindata)

INPUT
  model        SVDD model
               N: number of samples
  traindata    Training data


OUTPUT
  rho                 Bias term
  X1, X2              Grid range

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

% Compute the range of grid 
x1_range = grid_range(traindata(:, 1));
x2_range = grid_range(traindata(:, 2));

% grid 
[X1, X2] = meshgrid(x1_range, x2_range);
X_Grid = [X1(:), X2(:)];

% the grid label is only for the input of the function 'libsvmpredict'
grid_label = ones(size(X_Grid, 1), 1);

% Predict the label of each grid point
[~, ~, rho_0] = libsvmpredict(grid_label, X_Grid, model);
rho = reshape(rho_0, size(X1, 1), size(X1, 2));
end

function [traindata, testdata, trainlabel, testlabel] = prepareData
%{ 
% DESCRIPTION
Prepare the data for SVDD_WOA

      [traindata, testdata, trainlabel, testlabel] = prepareData

OUTPUT
  traindata           Training data
  testdata            Testing data
  trainlabel          Training label
  trainlabel          Training label

Created on 18th October 2019, by Kepeng Qiu.
-------------------------------------------------------------%
%} 

load .\data\banana.mat

traindata(:, 1) = banana(1:2:500, 1);
traindata(:, 2) = banana(1:2:500, 2);

testdata(:, 1) = banana(501:2:1000, 1);
testdata(:, 2) = banana(501:2:1000, 2);

trainlabel = ones(size(traindata, 1), 1);
testlabel = -ones(size(testdata, 1), 1);
end


3 运行结果

4 参考文献

[1]李传亮. 基于SVDD和参数辨识的模拟电路故障诊断方法研究[D]. 南京航空航天大学.

[2]肖托. 一种改进的支持向量数据描述算法[D]. 哈尔滨工程大学, 2013.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


3 运行结果

4 参考文献

[1]李传亮. 基于SVDD和参数辨识的模拟电路故障诊断方法研究[D]. 南京航空航天大学.

[2]肖托. 一种改进的支持向量数据描述算法[D]. 哈尔滨工程大学, 2013.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

原网站

版权声明
本文为[matlab_dingdang]所创,转载请带上原文链接,感谢
https://blog.csdn.net/matlab_dingdang/article/details/126038023