当前位置:网站首页>NuScenes关于Radar的配置信息
NuScenes关于Radar的配置信息
2022-06-29 13:39:00 【naca yu】
Nuscenes关于雷达处理的部分:

- 以上包含传感器性能信息:
radar检测距离:≤250m
77GHz电磁波频率
速度精度±0.1km/h
13Hz的工作频率
雷达点云多视角可视化
Nuscenes毫米波雷达多视角可视化
格式定义
- 包含nuscenes内部数据中radar的数据格式、数据单位
- 内部定义了雷达预先滤波和非滤波模式
- 关于内部格式:
FIELDS x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 vx_rms vy_rms
SIZE 4 4 4 1 2 4 4 4 4 4 1 1 1 1 1 1 1 1
TYPE F F F I I F F F F F I I I I I I I I
源码部分:/nuscenes/utils/data_classes.py
class RadarPointCloud(PointCloud):
# Class-level settings for radar pointclouds, see from_file().
invalid_states = [0] # type: List[int]
dynprop_states = range(7) # type: List[int] # Use [0, 2, 6] for moving objects only.
ambig_states = [3] # type: List[int]
@classmethod
def disable_filters(cls) -> None:
""" Disable all radar filter settings. Use this method to plot all radar returns. Note that this method affects the global settings. """
cls.invalid_states = list(range(18))
cls.dynprop_states = list(range(8))
cls.ambig_states = list(range(5))
@classmethod
def default_filters(cls) -> None:
""" Set the defaults for all radar filter settings. Note that this method affects the global settings. """
cls.invalid_states = [0]
cls.dynprop_states = range(7)
cls.ambig_states = [3]
@staticmethod
def nbr_dims() -> int:
""" Returns the number of dimensions. :return: Number of dimensions. """
return 18
@classmethod
def from_file(cls,
file_name: str,
invalid_states: List[int] = None,
dynprop_states: List[int] = None,
ambig_states: List[int] = None) -> 'RadarPointCloud':
""" Loads RADAR data from a Point Cloud Data file. See details below. :param file_name: The path of the pointcloud file. :param invalid_states: Radar states to be kept. See details below. :param dynprop_states: Radar states to be kept. Use [0, 2, 6] for moving objects only. See details below. :param ambig_states: Radar states to be kept. See details below. To keep all radar returns, set each state filter to range(18). :return: <np.float: d, n>. Point cloud matrix with d dimensions and n points. Example of the header fields: # .PCD v0.7 - Point Cloud Data file format VERSION 0.7 FIELDS x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 vx_rms vy_rms SIZE 4 4 4 1 2 4 4 4 4 4 1 1 1 1 1 1 1 1 TYPE F F F I I F F F F F I I I I I I I I COUNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 WIDTH 125 HEIGHT 1 VIEWPOINT 0 0 0 1 0 0 0 POINTS 125 DATA binary Below some of the fields are explained in more detail: x is front, y is left vx, vy are the velocities in m/s. vx_comp, vy_comp are the velocities in m/s compensated by the ego motion. We recommend using the compensated velocities. invalid_state: state of Cluster validity state. (Invalid states) 0x01 invalid due to low RCS 0x02 invalid due to near-field artefact 0x03 invalid far range cluster because not confirmed in near range 0x05 reserved 0x06 invalid cluster due to high mirror probability 0x07 Invalid cluster because outside sensor field of view 0x0d reserved 0x0e invalid cluster because it is a harmonics (Valid states) 0x00 valid 0x04 valid cluster with low RCS 0x08 valid cluster with azimuth correction due to elevation 0x09 valid cluster with high child probability 0x0a valid cluster with high probability of being a 50 deg artefact 0x0b valid cluster but no local maximum 0x0c valid cluster with high artefact probability 0x0f valid cluster with above 95m in near range 0x10 valid cluster with high multi-target probability 0x11 valid cluster with suspicious angle dynProp: Dynamic property of cluster to indicate if is moving or not. 0: moving 1: stationary 2: oncoming 3: stationary candidate 4: unknown 5: crossing stationary 6: crossing moving 7: stopped ambig_state: State of Doppler (radial velocity) ambiguity solution. 0: invalid 1: ambiguous 2: staggered ramp 3: unambiguous 4: stationary candidates pdh0: False alarm probability of cluster (i.e. probability of being an artefact caused by multipath or similar). 0: invalid 1: <25% 2: 50% 3: 75% 4: 90% 5: 99% 6: 99.9% 7: <=100% """
assert file_name.endswith('.pcd'), 'Unsupported filetype {}'.format(file_name)
meta = []
with open(file_name, 'rb') as f:
for line in f:
line = line.strip().decode('utf-8')
meta.append(line)
if line.startswith('DATA'):
break
data_binary = f.read()
# Get the header rows and check if they appear as expected.
assert meta[0].startswith('#'), 'First line must be comment'
assert meta[1].startswith('VERSION'), 'Second line must be VERSION'
sizes = meta[3].split(' ')[1:]
types = meta[4].split(' ')[1:]
counts = meta[5].split(' ')[1:]
width = int(meta[6].split(' ')[1])
height = int(meta[7].split(' ')[1])
data = meta[10].split(' ')[1]
feature_count = len(types)
assert width > 0
assert len([c for c in counts if c != c]) == 0, 'Error: COUNT not supported!'
assert height == 1, 'Error: height != 0 not supported!'
assert data == 'binary'
# Lookup table for how to decode the binaries.
unpacking_lut = {
'F': {
2: 'e', 4: 'f', 8: 'd'},
'I': {
1: 'b', 2: 'h', 4: 'i', 8: 'q'},
'U': {
1: 'B', 2: 'H', 4: 'I', 8: 'Q'}}
types_str = ''.join([unpacking_lut[t][int(s)] for t, s in zip(types, sizes)])
# Decode each point.
offset = 0
point_count = width
points = []
for i in range(point_count):
point = []
for p in range(feature_count):
start_p = offset
end_p = start_p + int(sizes[p])
assert end_p < len(data_binary)
point_p = struct.unpack(types_str[p], data_binary[start_p:end_p])[0]
point.append(point_p)
offset = end_p
points.append(point)
# A NaN in the first point indicates an empty pointcloud.
point = np.array(points[0])
if np.any(np.isnan(point)):
return cls(np.zeros((feature_count, 0)))
# Convert to numpy matrix.
points = np.array(points).transpose()
# If no parameters are provided, use default settings.
invalid_states = cls.invalid_states if invalid_states is None else invalid_states
dynprop_states = cls.dynprop_states if dynprop_states is None else dynprop_states
ambig_states = cls.ambig_states if ambig_states is None else ambig_states
# Filter points with an invalid state.
valid = [p in invalid_states for p in points[-4, :]]
points = points[:, valid]
# Filter by dynProp.
valid = [p in dynprop_states for p in points[3, :]]
points = points[:, valid]
# Filter by ambig_state.
valid = [p in ambig_states for p in points[11, :]]
points = points[:, valid]
return cls(points)
边栏推荐
- 【黑马早报】中公教育市值蒸发逾2000亿;新东方直播粉丝破2000万;HM关闭中国首店;万科郁亮称房地产已触底;微信上线“大爆炸”功能...
- 靠代理,靠买断,国产端游的蛮荒时代等待下一个《永劫无间》
- Dynamic feedback load balancing strategy based on Cluster
- BYD has three years left
- Stable currency risk profile: are usdt and usdc safe?
- 【烹饪记录】--- 酸辣白菜
- Industry analysis - quick intercom, building intercom
- 直觉与实现:Batch Normalization
- 逆向调试入门-PE文件节表与区块03/07
- 数字IC手撕代码--交通灯
猜你喜欢

Installation and removal of cover for CPU protection on desktop motherboard

Koa2+better-sqlite3 to add, delete, change and query

leetcode:226. Flip binary tree

Appkey when applying for offline packaging of uniapp
![[dark horse morning post] the market value of China public education has evaporated by more than 200billion; New Oriental has more than 20million live fans; HM closes its first store in China; Vanke Y](/img/d7/4671b5a74317a8f87ffd36be2b34e1.jpg)
[dark horse morning post] the market value of China public education has evaporated by more than 200billion; New Oriental has more than 20million live fans; HM closes its first store in China; Vanke Y
![[use of veux developer tools - use of getters]](/img/85/7a8d0f9d0c86eb3963db280da70049.png)
[use of veux developer tools - use of getters]

golang6 反射

win10安装Monggodb的基本使用教程

微信小程序:修复采集接口版云开发表情包

Wechat applet: Yunkai publishes white wall wechat applet source code download server free and domain name support traffic main revenue
随机推荐
Mondo rescue creates an image file (which is conducive to image damage recovery)
C language__ VA_ ARGS__ Usage of
机器学习 Out-of-Fold 折外预测详解 | 使用折外预测 OOF 评估模型的泛化性能和构建集成模型
MySQL数据库:drop、truncate、delete的区别
台式机主板上保护cpu的盖子安装和拆卸
Normalization layer of pytorch learning (batchnorm, layernorm, instancenorm, groupnorm) [easy to understand]
Follow me study hcie big data mining Chapter 1 Introduction to data mining module 1
昨天面试居然聊了半个多小时的异常处理
golang6 反射
Installation and removal of cover for CPU protection on desktop motherboard
ANSVC无功补偿装置在河北某购物广场中的应用
每周 Postgres 世界动态 2022w25
节点数据采集和标签信息的远程洪泛传输
微信小程序:全新独家云开发微群人脉
布隆过滤器Bloom Filter简介
现场快递柜状态采集与控制系统
MySQL intercepts the string to remove duplication, and MySQL intercepts the string to remove reassembly
一位博士在华为的22年
leetcode:226. Flip binary tree
疯狂的数字藏品,下一个造富神话?