当前位置:网站首页>NuScenes关于Radar的配置信息
NuScenes关于Radar的配置信息
2022-06-29 13:39:00 【naca yu】
Nuscenes关于雷达处理的部分:

- 以上包含传感器性能信息:
radar检测距离:≤250m
77GHz电磁波频率
速度精度±0.1km/h
13Hz的工作频率
雷达点云多视角可视化
Nuscenes毫米波雷达多视角可视化
格式定义
- 包含nuscenes内部数据中radar的数据格式、数据单位
- 内部定义了雷达预先滤波和非滤波模式
- 关于内部格式:
FIELDS x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 vx_rms vy_rms
SIZE 4 4 4 1 2 4 4 4 4 4 1 1 1 1 1 1 1 1
TYPE F F F I I F F F F F I I I I I I I I
源码部分:/nuscenes/utils/data_classes.py
class RadarPointCloud(PointCloud):
# Class-level settings for radar pointclouds, see from_file().
invalid_states = [0] # type: List[int]
dynprop_states = range(7) # type: List[int] # Use [0, 2, 6] for moving objects only.
ambig_states = [3] # type: List[int]
@classmethod
def disable_filters(cls) -> None:
""" Disable all radar filter settings. Use this method to plot all radar returns. Note that this method affects the global settings. """
cls.invalid_states = list(range(18))
cls.dynprop_states = list(range(8))
cls.ambig_states = list(range(5))
@classmethod
def default_filters(cls) -> None:
""" Set the defaults for all radar filter settings. Note that this method affects the global settings. """
cls.invalid_states = [0]
cls.dynprop_states = range(7)
cls.ambig_states = [3]
@staticmethod
def nbr_dims() -> int:
""" Returns the number of dimensions. :return: Number of dimensions. """
return 18
@classmethod
def from_file(cls,
file_name: str,
invalid_states: List[int] = None,
dynprop_states: List[int] = None,
ambig_states: List[int] = None) -> 'RadarPointCloud':
""" Loads RADAR data from a Point Cloud Data file. See details below. :param file_name: The path of the pointcloud file. :param invalid_states: Radar states to be kept. See details below. :param dynprop_states: Radar states to be kept. Use [0, 2, 6] for moving objects only. See details below. :param ambig_states: Radar states to be kept. See details below. To keep all radar returns, set each state filter to range(18). :return: <np.float: d, n>. Point cloud matrix with d dimensions and n points. Example of the header fields: # .PCD v0.7 - Point Cloud Data file format VERSION 0.7 FIELDS x y z dyn_prop id rcs vx vy vx_comp vy_comp is_quality_valid ambig_state x_rms y_rms invalid_state pdh0 vx_rms vy_rms SIZE 4 4 4 1 2 4 4 4 4 4 1 1 1 1 1 1 1 1 TYPE F F F I I F F F F F I I I I I I I I COUNT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 WIDTH 125 HEIGHT 1 VIEWPOINT 0 0 0 1 0 0 0 POINTS 125 DATA binary Below some of the fields are explained in more detail: x is front, y is left vx, vy are the velocities in m/s. vx_comp, vy_comp are the velocities in m/s compensated by the ego motion. We recommend using the compensated velocities. invalid_state: state of Cluster validity state. (Invalid states) 0x01 invalid due to low RCS 0x02 invalid due to near-field artefact 0x03 invalid far range cluster because not confirmed in near range 0x05 reserved 0x06 invalid cluster due to high mirror probability 0x07 Invalid cluster because outside sensor field of view 0x0d reserved 0x0e invalid cluster because it is a harmonics (Valid states) 0x00 valid 0x04 valid cluster with low RCS 0x08 valid cluster with azimuth correction due to elevation 0x09 valid cluster with high child probability 0x0a valid cluster with high probability of being a 50 deg artefact 0x0b valid cluster but no local maximum 0x0c valid cluster with high artefact probability 0x0f valid cluster with above 95m in near range 0x10 valid cluster with high multi-target probability 0x11 valid cluster with suspicious angle dynProp: Dynamic property of cluster to indicate if is moving or not. 0: moving 1: stationary 2: oncoming 3: stationary candidate 4: unknown 5: crossing stationary 6: crossing moving 7: stopped ambig_state: State of Doppler (radial velocity) ambiguity solution. 0: invalid 1: ambiguous 2: staggered ramp 3: unambiguous 4: stationary candidates pdh0: False alarm probability of cluster (i.e. probability of being an artefact caused by multipath or similar). 0: invalid 1: <25% 2: 50% 3: 75% 4: 90% 5: 99% 6: 99.9% 7: <=100% """
assert file_name.endswith('.pcd'), 'Unsupported filetype {}'.format(file_name)
meta = []
with open(file_name, 'rb') as f:
for line in f:
line = line.strip().decode('utf-8')
meta.append(line)
if line.startswith('DATA'):
break
data_binary = f.read()
# Get the header rows and check if they appear as expected.
assert meta[0].startswith('#'), 'First line must be comment'
assert meta[1].startswith('VERSION'), 'Second line must be VERSION'
sizes = meta[3].split(' ')[1:]
types = meta[4].split(' ')[1:]
counts = meta[5].split(' ')[1:]
width = int(meta[6].split(' ')[1])
height = int(meta[7].split(' ')[1])
data = meta[10].split(' ')[1]
feature_count = len(types)
assert width > 0
assert len([c for c in counts if c != c]) == 0, 'Error: COUNT not supported!'
assert height == 1, 'Error: height != 0 not supported!'
assert data == 'binary'
# Lookup table for how to decode the binaries.
unpacking_lut = {
'F': {
2: 'e', 4: 'f', 8: 'd'},
'I': {
1: 'b', 2: 'h', 4: 'i', 8: 'q'},
'U': {
1: 'B', 2: 'H', 4: 'I', 8: 'Q'}}
types_str = ''.join([unpacking_lut[t][int(s)] for t, s in zip(types, sizes)])
# Decode each point.
offset = 0
point_count = width
points = []
for i in range(point_count):
point = []
for p in range(feature_count):
start_p = offset
end_p = start_p + int(sizes[p])
assert end_p < len(data_binary)
point_p = struct.unpack(types_str[p], data_binary[start_p:end_p])[0]
point.append(point_p)
offset = end_p
points.append(point)
# A NaN in the first point indicates an empty pointcloud.
point = np.array(points[0])
if np.any(np.isnan(point)):
return cls(np.zeros((feature_count, 0)))
# Convert to numpy matrix.
points = np.array(points).transpose()
# If no parameters are provided, use default settings.
invalid_states = cls.invalid_states if invalid_states is None else invalid_states
dynprop_states = cls.dynprop_states if dynprop_states is None else dynprop_states
ambig_states = cls.ambig_states if ambig_states is None else ambig_states
# Filter points with an invalid state.
valid = [p in invalid_states for p in points[-4, :]]
points = points[:, valid]
# Filter by dynProp.
valid = [p in dynprop_states for p in points[3, :]]
points = points[:, valid]
# Filter by ambig_state.
valid = [p in ambig_states for p in points[11, :]]
points = points[:, valid]
return cls(points)
边栏推荐
- 投资人跌下神坛:半年0出手,转行送外卖
- windows平台下的mysql启动等基本操作
- Redis的五种数据结构的底层实现原理
- MySQL intercepts the string to remove duplication, and MySQL intercepts the string to remove reassembly
- GWD:基于高斯Wasserstein距离的旋转目标检测 | ICML 2021
- 单项数据流之子组件修改父组件的值
- [use of veux developer tools - use of getters]
- Tiktok's global short video dominance may be reversed by YouTube
- Wechat applet: Halloween avatar box generation tool
- 灵感收集·创意写作软件评测:Flomo、Obsidian Memo、Napkin、FlowUs
猜你喜欢

动荡的中介生意,不安的租房人

Online text filter less than specified length tool

中康控股开启招股:拟募资净额3.95亿港元,预计7月12日上市
![[cloud resident co creation] break through the performance bottleneck of image recognition through rust language computing acceleration technology](/img/1a/c5e1e17d057c8b4ba2e57f28237498.png)
[cloud resident co creation] break through the performance bottleneck of image recognition through rust language computing acceleration technology

高校女生穿旗袍答辩!网友:导师说论文要是和旗袍一样漂亮就好了

Investors fell off the altar: 0 sales in half a year, transferred to business and delivered takeout

win10安装Monggodb的基本使用教程

硬件开发笔记(八): 硬件开发基本流程,制作一个USB转RS232的模块(七):创建基础DIP元器件(晶振)封装并关联原理图元器件

go-zero微服务实战系列(七、请求量这么高该如何优化)

【VEUX开发者工具的使用-getters使用】
随机推荐
现场快递柜状态采集与控制系统
MySQL数据库:使用show profile命令分析性能
昨天面试居然聊了半个多小时的异常处理
Stable currency risk profile: are usdt and usdc safe?
纳人才,谋发展 | 人大金仓喜获“最佳雇主校招案例奖”
Applet Wechat: un nouveau réseau exclusif de microgroupes de développement de Cloud
[high concurrency] 28000 words' summary of callable and future interview knowledge points. After reading it, I went directly to ByteDance. Forgive me for being a little drifting (Part 1)
What is the reason why the gbase8s database encountered a 951 error?
人不成熟的特征
微信小程序:修复采集接口版云开发表情包
Intuition and Implementation: batch normalization
Crazy digital collections, the next myth of making wealth?
Return value‘s Lifetime
Introduction to reverse commissioning -pe file section table and block 03/07
[high concurrency] cache idea
Follow me study hcie big data mining Chapter 1 Introduction to data mining module 1
微信小程序:全新獨家雲開發微群人脈
Koa2+better-sqlite3 to add, delete, change and query
Turbulent intermediary business, restless renters
文物数字藏品,开启文化传承的新方式