当前位置:网站首页>[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
2022-07-03 17:57:00 【Programmer community】
List of articles
- One 、 Find the generating function for a given order
- Two 、 Calculate the series given the generating function
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
In sequence General formula Namely Series
One 、 Find the generating function for a given order
seek
b
n
=
7
⋅
3
n
b_n = 7\cdot 3^n
bn=7⋅3n The generating function of ;
The known sequence is
1
n
1^n
1n , The corresponding generating function is
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
First, according to The sequence General term representation , Write the sum of the series :
G
(
x
)
=
7
×
3
0
x
0
+
7
×
3
1
x
1
+
7
×
3
2
x
2
+
⋯
+
7
×
3
n
x
n
+
⋯
G(x) = 7 \times 3^0x^0 + 7 \times 3^1x^1 + 7 \times 3^2x^2 + \cdots + 7 \times 3^nx^n + \cdots
G(x)=7×30x0+7×31x1+7×32x2+⋯+7×3nxn+⋯
Extract constants to the outside :
G
(
x
)
=
7
(
3
0
x
0
+
3
1
x
1
+
3
2
x
2
+
⋯
+
3
n
x
n
+
⋯
)
G(x) = 7 ( 3^0x^0 + 3^1x^1 + 3^2x^2 + \cdots + 3^nx^n + \cdots )
G(x)=7(30x0+31x1+32x2+⋯+3nxn+⋯)
Write it in the combined form :
G
(
x
)
=
7
∑
n
=
0
∞
3
n
x
n
G(x) = 7 \sum\limits_{n=0}^\infty 3^nx^n
G(x)=7n=0∑∞3nxn
According to the commutation property of the generating function : Through exchange , take
3
x
3x
3x As an item :
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n
G(x)=7n=0∑∞(3x)n
according to Common generating functions
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
A(x) = \sum\limits_{n=0}^{\infty} x^n = \cfrac{1}{1-x}
A(x)=n=0∑∞xn=1−x1
We can draw :
∑
n
=
0
∞
(
3
x
)
n
=
1
1
−
3
x
\sum\limits_{n=0}^\infty (3x)^n =\cfrac{1}{1-3x}
n=0∑∞(3x)n=1−3x1
According to the linear properties of the generating function , Multiplicative property :
b
n
=
α
a
n
b_n = \alpha a_n
bn=αan , be
B
(
x
)
=
α
A
(
x
)
B(x) = \alpha A(x)
B(x)=αA(x)
We can get the final generating function
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
=
7
1
−
3
x
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n = \cfrac{7}{1-3x}
G(x)=7n=0∑∞(3x)n=1−3x7
Two 、 Calculate the series given the generating function
Given sequence
{
b
n
}
\{b_n\}
{ bn} The generating function of
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 , seek
{
b
n
}
\{b_n\}
{ bn}
First the Generating function Turn into Other Generating function The sum of the ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22
take
1
−
3
x
+
2
x
2
1-3x + 2x^2
1−3x+2x2 Factoring factors , Decompose into
(
1
−
x
)
(
1
−
2
x
)
(1-x)(1-2x)
(1−x)(1−2x)
Turn it into And in the following form , molecular
A
,
B
A,B
A,B Is a undetermined constant ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
A
1
−
x
+
B
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{A}{1-x} + \cfrac{B}{1-2x}
G(x)=1−3x+2x22=1−xA+1−2xB
Divide the above formula into two parts , Express into
A
,
B
A, B
A,B The fraction of :
G
(
x
)
=
A
1
−
x
+
B
1
−
2
x
=
A
(
1
−
2
x
)
+
B
(
1
−
x
)
(
1
−
x
)
(
1
−
2
x
)
G(x) = \cfrac{A}{1-x} + \cfrac{B}{1-2x} = \cfrac{A(1-2x) + B(1-x)}{(1-x)(1-2x)}
G(x)=1−xA+1−2xB=(1−x)(1−2x)A(1−2x)+B(1−x)
=
A
−
2
A
x
+
B
−
B
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{A-2Ax + B- Bx}{(1-x)(1-2x)}
=(1−x)(1−2x)A−2Ax+B−Bx
=
(
A
+
B
)
−
(
2
A
+
B
)
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{(1-x)(1-2x)}
=(1−x)(1−2x)(A+B)−(2A+B)x
=
(
A
+
B
)
−
(
2
A
+
B
)
x
1
−
3
x
+
2
x
2
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{1-3x + 2x^2}
=1−3x+2x2(A+B)−(2A+B)x
And
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 Molecular
x
x
x term And Constant term contrast :
x
x
x The first power term is
0
0
0 , namely
2
A
+
B
=
0
2A + B = 0
2A+B=0
The constant term is
2
2
2 , namely
A
+
B
=
2
A + B = 2
A+B=2
Get the equations :
{
A
+
B
=
2
2
A
+
B
=
0
\begin{cases} A + B = 2 \\\\ 2A + B = 0 \end{cases}
⎩⎪⎨⎪⎧A+B=22A+B=0
Solve the above equations , Get the results :
{
A
=
−
2
B
=
4
\begin{cases} A = -2 \\\\ B = 4 \end{cases}
⎩⎪⎨⎪⎧A=−2B=4
Then the generating function is finally decomposed into :
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
−
2
1
−
x
+
4
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{-2}{1-x} + \cfrac{4}{1-2x}
G(x)=1−3x+2x22=1−x−2+1−2x4
Use linear properties :
−
2
1
−
x
\cfrac{-2}{1-x}
1−x−2 The corresponding series is :
∑
n
=
0
∞
(
−
2
)
x
n
\sum\limits_{n=0}^\infty(-2)x^n
n=0∑∞(−2)xn , The general term of the sequence is
c
n
=
−
2
c_n=-2
cn=−2 ;
Use linear properties , Commutative properties :
4
1
−
2
x
\cfrac{4}{1-2x}
1−2x4 The corresponding series is :
∑
n
=
0
∞
4
(
2
x
)
n
=
∑
n
=
0
∞
4
⋅
2
n
x
n
\sum\limits_{n=0}^\infty4(2x)^n=\sum\limits_{n=0}^\infty4\cdot 2^nx^n
n=0∑∞4(2x)n=n=0∑∞4⋅2nxn , The general term of the sequence is
4
⋅
2
n
4\cdot 2^n
4⋅2n
The final sequence is :
b
n
=
−
2
+
4
⋅
2
n
b_n = -2 + 4\cdot 2^n
bn=−2+4⋅2n
边栏推荐
- [set theory] order relation: summary (partial order relation | partial order set | comparable | strictly less than | covering | hasto | total order relation | quasi order relation | partial order rela
- PHP MySQL preprocessing statement
- 【统信UOS】扫描仪设备管理驱动安装
- Global and Chinese health care OEM and ODM market status survey and investment planning recommendations report 2022-2028
- SDNUOJ1015
- Introduction to PHP MySQL
- The second largest gay dating website in the world was exposed, and the status of programmers in 2022
- SSL / bio pour OpenSSL Get FD
- WebView module manages the application window interface to realize the logical control and management operation of multiple windows (Part 1)
- BFS - topology sort
猜你喜欢

Internet Hospital his Management Platform source, online Inquiry, appointment Registration Smart Hospital Small program source

Tensorboard quick start (pytoch uses tensorboard)

Draw some simple graphics with MFC

Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028

Talk about the design and implementation logic of payment process

How to deploy applications on kubernetes cluster
![Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]](/img/da/0a282b4773fe3909d1e5e9d19f8549.jpg)
Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]

Wechat applet for the first time

互联网医院HIS管理平台源码,在线问诊,预约挂号 智慧医院小程序源码

MySQL grouping query
随机推荐
ArrayList分析3 : 删除元素
As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
WEB-UI自动化测试-最全元素定位方法
PHP processing - watermark images (text, etc.)
小程序 多tab 多swiper + 每个tab分页
The difference between i++ and ++i: tell their differences easily
Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
ArrayList分析3 : 删除元素
分布式的任务分发框架-Gearman
Inheritance of ES6 class
[教程]在 CoreOS 上构建你的第一个应用
Web-ui automated testing - the most complete element positioning method
PUT vs. POST for Uploading Files - RESTful API to be Built Using Zend Framework
The gbase 8A database does not support the DB2 function value (column_name, 0) cluster syntax
Wechat applet for the first time
1147_ Makefile learning_ Target files and dependent files in makefile
Deops入门
OpenSSL的SSL/BIO_get_fd
数学公式(测试)
Ml (machine learning) softmax function to realize the classification of simple movie categories