当前位置:网站首页>[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
2022-07-03 17:57:00 【Programmer community】
List of articles
- One 、 Find the generating function for a given order
- Two 、 Calculate the series given the generating function
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
In sequence General formula Namely Series
One 、 Find the generating function for a given order
seek
b
n
=
7
⋅
3
n
b_n = 7\cdot 3^n
bn=7⋅3n The generating function of ;
The known sequence is
1
n
1^n
1n , The corresponding generating function is
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
First, according to The sequence General term representation , Write the sum of the series :
G
(
x
)
=
7
×
3
0
x
0
+
7
×
3
1
x
1
+
7
×
3
2
x
2
+
⋯
+
7
×
3
n
x
n
+
⋯
G(x) = 7 \times 3^0x^0 + 7 \times 3^1x^1 + 7 \times 3^2x^2 + \cdots + 7 \times 3^nx^n + \cdots
G(x)=7×30x0+7×31x1+7×32x2+⋯+7×3nxn+⋯
Extract constants to the outside :
G
(
x
)
=
7
(
3
0
x
0
+
3
1
x
1
+
3
2
x
2
+
⋯
+
3
n
x
n
+
⋯
)
G(x) = 7 ( 3^0x^0 + 3^1x^1 + 3^2x^2 + \cdots + 3^nx^n + \cdots )
G(x)=7(30x0+31x1+32x2+⋯+3nxn+⋯)
Write it in the combined form :
G
(
x
)
=
7
∑
n
=
0
∞
3
n
x
n
G(x) = 7 \sum\limits_{n=0}^\infty 3^nx^n
G(x)=7n=0∑∞3nxn
According to the commutation property of the generating function : Through exchange , take
3
x
3x
3x As an item :
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n
G(x)=7n=0∑∞(3x)n
according to Common generating functions
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
A(x) = \sum\limits_{n=0}^{\infty} x^n = \cfrac{1}{1-x}
A(x)=n=0∑∞xn=1−x1
We can draw :
∑
n
=
0
∞
(
3
x
)
n
=
1
1
−
3
x
\sum\limits_{n=0}^\infty (3x)^n =\cfrac{1}{1-3x}
n=0∑∞(3x)n=1−3x1
According to the linear properties of the generating function , Multiplicative property :
b
n
=
α
a
n
b_n = \alpha a_n
bn=αan , be
B
(
x
)
=
α
A
(
x
)
B(x) = \alpha A(x)
B(x)=αA(x)
We can get the final generating function
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
=
7
1
−
3
x
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n = \cfrac{7}{1-3x}
G(x)=7n=0∑∞(3x)n=1−3x7
Two 、 Calculate the series given the generating function
Given sequence
{
b
n
}
\{b_n\}
{ bn} The generating function of
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 , seek
{
b
n
}
\{b_n\}
{ bn}
First the Generating function Turn into Other Generating function The sum of the ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22
take
1
−
3
x
+
2
x
2
1-3x + 2x^2
1−3x+2x2 Factoring factors , Decompose into
(
1
−
x
)
(
1
−
2
x
)
(1-x)(1-2x)
(1−x)(1−2x)
Turn it into And in the following form , molecular
A
,
B
A,B
A,B Is a undetermined constant ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
A
1
−
x
+
B
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{A}{1-x} + \cfrac{B}{1-2x}
G(x)=1−3x+2x22=1−xA+1−2xB
Divide the above formula into two parts , Express into
A
,
B
A, B
A,B The fraction of :
G
(
x
)
=
A
1
−
x
+
B
1
−
2
x
=
A
(
1
−
2
x
)
+
B
(
1
−
x
)
(
1
−
x
)
(
1
−
2
x
)
G(x) = \cfrac{A}{1-x} + \cfrac{B}{1-2x} = \cfrac{A(1-2x) + B(1-x)}{(1-x)(1-2x)}
G(x)=1−xA+1−2xB=(1−x)(1−2x)A(1−2x)+B(1−x)
=
A
−
2
A
x
+
B
−
B
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{A-2Ax + B- Bx}{(1-x)(1-2x)}
=(1−x)(1−2x)A−2Ax+B−Bx
=
(
A
+
B
)
−
(
2
A
+
B
)
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{(1-x)(1-2x)}
=(1−x)(1−2x)(A+B)−(2A+B)x
=
(
A
+
B
)
−
(
2
A
+
B
)
x
1
−
3
x
+
2
x
2
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{1-3x + 2x^2}
=1−3x+2x2(A+B)−(2A+B)x
And
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 Molecular
x
x
x term And Constant term contrast :
x
x
x The first power term is
0
0
0 , namely
2
A
+
B
=
0
2A + B = 0
2A+B=0
The constant term is
2
2
2 , namely
A
+
B
=
2
A + B = 2
A+B=2
Get the equations :
{
A
+
B
=
2
2
A
+
B
=
0
\begin{cases} A + B = 2 \\\\ 2A + B = 0 \end{cases}
⎩⎪⎨⎪⎧A+B=22A+B=0
Solve the above equations , Get the results :
{
A
=
−
2
B
=
4
\begin{cases} A = -2 \\\\ B = 4 \end{cases}
⎩⎪⎨⎪⎧A=−2B=4
Then the generating function is finally decomposed into :
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
−
2
1
−
x
+
4
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{-2}{1-x} + \cfrac{4}{1-2x}
G(x)=1−3x+2x22=1−x−2+1−2x4
Use linear properties :
−
2
1
−
x
\cfrac{-2}{1-x}
1−x−2 The corresponding series is :
∑
n
=
0
∞
(
−
2
)
x
n
\sum\limits_{n=0}^\infty(-2)x^n
n=0∑∞(−2)xn , The general term of the sequence is
c
n
=
−
2
c_n=-2
cn=−2 ;
Use linear properties , Commutative properties :
4
1
−
2
x
\cfrac{4}{1-2x}
1−2x4 The corresponding series is :
∑
n
=
0
∞
4
(
2
x
)
n
=
∑
n
=
0
∞
4
⋅
2
n
x
n
\sum\limits_{n=0}^\infty4(2x)^n=\sum\limits_{n=0}^\infty4\cdot 2^nx^n
n=0∑∞4(2x)n=n=0∑∞4⋅2nxn , The general term of the sequence is
4
⋅
2
n
4\cdot 2^n
4⋅2n
The final sequence is :
b
n
=
−
2
+
4
⋅
2
n
b_n = -2 + 4\cdot 2^n
bn=−2+4⋅2n
边栏推荐
- Inheritance of ES6 class
- [教程]在 CoreOS 上构建你的第一个应用
- [combinatorics] recursive equation (case where the non-homogeneous part is exponential | example where the non-homogeneous part is exponential)
- Leetcode Valentine's Day Special - looking for a single dog
- c# .net 工具生态
- Mathematical formula (test)
- Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
- [combinatorics] recursive equation (the non-homogeneous part is an exponential function and the bottom is the characteristic root | example of finding a special solution)
- Life perception 1
- Brief introduction to the core functions of automatic penetration testing tool
猜你喜欢
PHP MySQL preprocessing statement
Deops入门
Micro service component sentinel console call
微服务组件Sentinel控制台调用
List的stream中Long对象与long判等问题记录
Leetcode 108 converts an ordered array into a binary search tree -- recursive method
STM32实现74HC595控制
Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]
PHP MySQL create database
Talk about the design and implementation logic of payment process
随机推荐
How to install PHP on Ubuntu 20.04
Internet Hospital his Management Platform source, online Inquiry, appointment Registration Smart Hospital Small program source
PHP MySQL reads data
Win32: analyse du fichier dump pour la défaillance du tas
As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
Analysis report on production and marketing demand and investment forecast of China's PVC industry from 2021 to 2026
Introduction to SolidWorks gear design software tool geartrax
PHP processing - watermark images (text, etc.)
Kotlin的協程:上下文
Ml (machine learning) softmax function to realize the classification of simple movie categories
A. Odd Selection【BruteForce】
Applet with multiple tabs and Swipers + paging of each tab
How to enforce parameters in PowerShell- How do I make parameters mandatory in PowerShell?
How to read the source code [debug and observe the source code]
Detailed explanation of common network attacks
[Tongxin UOS] scanner device management driver installation
Codeforces Round #803 (Div. 2) C. 3SUM Closure
Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
Global and Chinese pediatric palliative care drug market development research and investment planning recommendations report 2022-2028