当前位置:网站首页>[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
[combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
2022-07-03 17:57:00 【Programmer community】
List of articles
- One 、 Find the generating function for a given order
- Two 、 Calculate the series given the generating function
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
In sequence General formula Namely Series
One 、 Find the generating function for a given order
seek
b
n
=
7
⋅
3
n
b_n = 7\cdot 3^n
bn=7⋅3n The generating function of ;
The known sequence is
1
n
1^n
1n , The corresponding generating function is
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
First, according to The sequence General term representation , Write the sum of the series :
G
(
x
)
=
7
×
3
0
x
0
+
7
×
3
1
x
1
+
7
×
3
2
x
2
+
⋯
+
7
×
3
n
x
n
+
⋯
G(x) = 7 \times 3^0x^0 + 7 \times 3^1x^1 + 7 \times 3^2x^2 + \cdots + 7 \times 3^nx^n + \cdots
G(x)=7×30x0+7×31x1+7×32x2+⋯+7×3nxn+⋯
Extract constants to the outside :
G
(
x
)
=
7
(
3
0
x
0
+
3
1
x
1
+
3
2
x
2
+
⋯
+
3
n
x
n
+
⋯
)
G(x) = 7 ( 3^0x^0 + 3^1x^1 + 3^2x^2 + \cdots + 3^nx^n + \cdots )
G(x)=7(30x0+31x1+32x2+⋯+3nxn+⋯)
Write it in the combined form :
G
(
x
)
=
7
∑
n
=
0
∞
3
n
x
n
G(x) = 7 \sum\limits_{n=0}^\infty 3^nx^n
G(x)=7n=0∑∞3nxn
According to the commutation property of the generating function : Through exchange , take
3
x
3x
3x As an item :
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n
G(x)=7n=0∑∞(3x)n
according to Common generating functions
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
A(x) = \sum\limits_{n=0}^{\infty} x^n = \cfrac{1}{1-x}
A(x)=n=0∑∞xn=1−x1
We can draw :
∑
n
=
0
∞
(
3
x
)
n
=
1
1
−
3
x
\sum\limits_{n=0}^\infty (3x)^n =\cfrac{1}{1-3x}
n=0∑∞(3x)n=1−3x1
According to the linear properties of the generating function , Multiplicative property :
b
n
=
α
a
n
b_n = \alpha a_n
bn=αan , be
B
(
x
)
=
α
A
(
x
)
B(x) = \alpha A(x)
B(x)=αA(x)
We can get the final generating function
G
(
x
)
=
7
∑
n
=
0
∞
(
3
x
)
n
=
7
1
−
3
x
G(x) = 7 \sum\limits_{n=0}^\infty (3x)^n = \cfrac{7}{1-3x}
G(x)=7n=0∑∞(3x)n=1−3x7
Two 、 Calculate the series given the generating function
Given sequence
{
b
n
}
\{b_n\}
{ bn} The generating function of
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 , seek
{
b
n
}
\{b_n\}
{ bn}
First the Generating function Turn into Other Generating function The sum of the ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22
take
1
−
3
x
+
2
x
2
1-3x + 2x^2
1−3x+2x2 Factoring factors , Decompose into
(
1
−
x
)
(
1
−
2
x
)
(1-x)(1-2x)
(1−x)(1−2x)
Turn it into And in the following form , molecular
A
,
B
A,B
A,B Is a undetermined constant ;
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
A
1
−
x
+
B
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{A}{1-x} + \cfrac{B}{1-2x}
G(x)=1−3x+2x22=1−xA+1−2xB
Divide the above formula into two parts , Express into
A
,
B
A, B
A,B The fraction of :
G
(
x
)
=
A
1
−
x
+
B
1
−
2
x
=
A
(
1
−
2
x
)
+
B
(
1
−
x
)
(
1
−
x
)
(
1
−
2
x
)
G(x) = \cfrac{A}{1-x} + \cfrac{B}{1-2x} = \cfrac{A(1-2x) + B(1-x)}{(1-x)(1-2x)}
G(x)=1−xA+1−2xB=(1−x)(1−2x)A(1−2x)+B(1−x)
=
A
−
2
A
x
+
B
−
B
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{A-2Ax + B- Bx}{(1-x)(1-2x)}
=(1−x)(1−2x)A−2Ax+B−Bx
=
(
A
+
B
)
−
(
2
A
+
B
)
x
(
1
−
x
)
(
1
−
2
x
)
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{(1-x)(1-2x)}
=(1−x)(1−2x)(A+B)−(2A+B)x
=
(
A
+
B
)
−
(
2
A
+
B
)
x
1
−
3
x
+
2
x
2
\ \ \ \ \ \ \ \ \ \ = \cfrac{(A + B) - (2A + B ) x}{1-3x + 2x^2}
=1−3x+2x2(A+B)−(2A+B)x
And
G
(
x
)
=
2
1
−
3
x
+
2
x
2
G(x) = \cfrac{2}{1-3x + 2x^2}
G(x)=1−3x+2x22 Molecular
x
x
x term And Constant term contrast :
x
x
x The first power term is
0
0
0 , namely
2
A
+
B
=
0
2A + B = 0
2A+B=0
The constant term is
2
2
2 , namely
A
+
B
=
2
A + B = 2
A+B=2
Get the equations :
{
A
+
B
=
2
2
A
+
B
=
0
\begin{cases} A + B = 2 \\\\ 2A + B = 0 \end{cases}
⎩⎪⎨⎪⎧A+B=22A+B=0
Solve the above equations , Get the results :
{
A
=
−
2
B
=
4
\begin{cases} A = -2 \\\\ B = 4 \end{cases}
⎩⎪⎨⎪⎧A=−2B=4
Then the generating function is finally decomposed into :
G
(
x
)
=
2
1
−
3
x
+
2
x
2
=
−
2
1
−
x
+
4
1
−
2
x
G(x) = \cfrac{2}{1-3x + 2x^2} = \cfrac{-2}{1-x} + \cfrac{4}{1-2x}
G(x)=1−3x+2x22=1−x−2+1−2x4
Use linear properties :
−
2
1
−
x
\cfrac{-2}{1-x}
1−x−2 The corresponding series is :
∑
n
=
0
∞
(
−
2
)
x
n
\sum\limits_{n=0}^\infty(-2)x^n
n=0∑∞(−2)xn , The general term of the sequence is
c
n
=
−
2
c_n=-2
cn=−2 ;
Use linear properties , Commutative properties :
4
1
−
2
x
\cfrac{4}{1-2x}
1−2x4 The corresponding series is :
∑
n
=
0
∞
4
(
2
x
)
n
=
∑
n
=
0
∞
4
⋅
2
n
x
n
\sum\limits_{n=0}^\infty4(2x)^n=\sum\limits_{n=0}^\infty4\cdot 2^nx^n
n=0∑∞4(2x)n=n=0∑∞4⋅2nxn , The general term of the sequence is
4
⋅
2
n
4\cdot 2^n
4⋅2n
The final sequence is :
b
n
=
−
2
+
4
⋅
2
n
b_n = -2 + 4\cdot 2^n
bn=−2+4⋅2n
边栏推荐
- MySQL grouping query
- PHP MySQL create database
- Postfix 技巧和故障排除命令
- Global and Chinese health care OEM and ODM market status survey and investment planning recommendations report 2022-2028
- Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
- Redis core technology and practice - learning notes (11): why not just string
- ArrayList分析3 : 删除元素
- [Yu Yue education] family education SPOC class 2 reference materials of Shanghai Normal University
- [LINUX]CentOS 7 安装MYSQL时报错“No package mysql-server available“No package zabbix-server-mysql availabl
- Module 9 operation
猜你喜欢

Module 9 operation

聊聊支付流程的设计与实现逻辑

聊聊支付流程的设计与实现逻辑

BFS - topology sort

On Data Mining

互联网医院HIS管理平台源码,在线问诊,预约挂号 智慧医院小程序源码

互聯網醫院HIS管理平臺源碼,在線問診,預約掛號 智慧醫院小程序源碼

一入“远程”终不悔,几人欢喜几人愁。| 社区征文
![[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th](/img/f1/c96c4a6d34e1ae971f492f4aed5a93.jpg)
[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th

Vs2013 has blocked the installer, and ie10 needs to be installed
随机推荐
[LINUX]CentOS 7 安装MYSQL时报错“No package mysql-server available“No package zabbix-server-mysql availabl
[combinatorics] generating function (summation property)
(8) HS corner detection
Deops入门
MySQL grouping query
Mathematical formula (test)
ArrayList analysis 3: delete elements
Investigation on the operation prospect of the global and Chinese Anti enkephalinase market and analysis report on the investment strategy of the 14th five year plan 2022-2028
A. Odd Selection【BruteForce】
How to purchase Google colab members in China
The third day of writing C language by Yabo people
[vscode] convert tabs to spaces
PHP MySQL inserts data
(9) Opencv Canny edge detection
OpenSSL的SSL/BIO_get_fd
Leetcode 538 converts binary search tree into cumulative tree -- recursive method and iterative method
Write a program to process a list container of string type. Find a special value in the container 9.27: and delete it if found. Rewrite the above procedure with deque container.
Research Report on competitive strategy Outlook Analysis and investment strategic planning of China's smart home equipment industry, 2022-2028
Fedora 21 安装 LAMP 主机服务器
Kotlin's collaboration: Context