当前位置:网站首页>[combinatorics] recursive equation (the non-homogeneous part is an exponential function and the bottom is the characteristic root | example of finding a special solution)
[combinatorics] recursive equation (the non-homogeneous part is an exponential function and the bottom is the characteristic root | example of finding a special solution)
2022-07-03 17:23:00 【Programmer community】
List of articles
- One 、 The nonhomogeneous part is Exponential function And The bottom is the case of characteristic root
- Two 、 The nonhomogeneous part is Exponential function And The bottom is the case of characteristic root Example
One 、 The nonhomogeneous part is Exponential function And The bottom is the case of characteristic root
Linear Nonhomogeneous recurrence equation with constant coefficients :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
⋯
−
a
k
H
(
n
−
k
)
=
f
(
n
)
H(n) - a_1H(n-1) - \cdots - a_kH(n-k) = f(n)
H(n)−a1H(n−1)−⋯−akH(n−k)=f(n) ,
n
≥
k
,
a
k
≠
0
,
f
(
n
)
≠
0
n\geq k , a_k\not= 0, f(n) \not= 0
n≥k,ak=0,f(n)=0
The left side of the above equation And “ Linear homogeneous recurrence equation with constant coefficients ” It's the same , But not on the right
0
0
0 , It's based on
n
n
n Of function
f
(
n
)
f(n)
f(n) , This type of recursive equation is called “ Linear Nonhomogeneous recurrence equation with constant coefficients ” ;
The nonhomogeneous part is Exponential function And The bottom is the case of characteristic root :
If the above “ Linear Nonhomogeneous recurrence equation with constant coefficients ” Of Nonhomogeneous part
f
(
n
)
f(n)
f(n) It's an exponential function ,
β
n
\beta^n
βn ,
If
β
\beta
β yes
e
e
e Heavy characteristic root ,
The special solution form of the nonhomogeneous part is :
H
∗
(
n
)
=
P
n
e
β
n
H^*(n) = P n^e \beta^n
H∗(n)=Pneβn ,
P
P
P Is constant ;
The above special solution
H
∗
(
n
)
=
P
n
e
β
n
H^*(n) = P n^e \beta^n
H∗(n)=Pneβn , Into the recursive equation , Solve the constant
P
P
P Value , Then the complete special solution is obtained ;
“ Linear Nonhomogeneous recurrence equation with constant coefficients ” The general solution is
H
(
n
)
=
H
(
n
)
‾
+
H
∗
(
n
)
H(n) = \overline{H(n)} + H^*(n)
H(n)=H(n)+H∗(n)
Use the above solution Special solution , And recurrence equation General solution of homogeneous part , Form the complete general solution of the recursive equation ;
Two 、 The nonhomogeneous part is Exponential function And The bottom is the case of characteristic root Example
Recurrence equation :
H
(
n
)
−
5
H
(
n
−
1
)
+
6
H
(
n
−
2
)
=
2
n
H(n) - 5H(n-1) + 6H(n-2)=2^n
H(n)−5H(n−1)+6H(n−2)=2n, Seeking special solution ?
View its characteristic root :
The standard form of recurrence equation is :
H
(
n
)
−
5
H
(
n
−
1
)
+
6
H
(
n
−
2
)
=
2
n
H(n) - 5H(n-1) + 6H(n-2)=2^n
H(n)−5H(n−1)+6H(n−2)=2n ,
Homogeneous part is
H
(
n
)
−
5
H
(
n
−
1
)
+
6
H
(
n
−
2
)
=
0
H(n) - 5H(n-1) + 6H(n-2)=0
H(n)−5H(n−1)+6H(n−2)=0
Write the characteristic equation :
x
2
−
5
x
+
6
=
0
x^2 - 5x + 6 = 0
x2−5x+6=0 ,
Characteristic root
q
1
=
2
,
q
2
=
3
q_1= 2, q_2 = 3
q1=2,q2=3
Find the recurrence equation Special solutions corresponding to Nonhomogeneous parts ,
The standard form of recurrence equation is :
H
(
n
)
−
5
H
(
n
−
1
)
+
6
H
(
n
−
2
)
=
2
n
H(n) - 5H(n-1) + 6H(n-2)=2^n
H(n)−5H(n−1)+6H(n−2)=2n
The nonhomogeneous part is
2
n
2^n
2n , It's an exponential function , But the bottom line is
1
1
1 Heavy characteristic root ,
At this time, the bottom is
e
e
e The special solution is constructed by repeating the special solution form of the characteristic root
H
∗
(
n
)
=
P
n
e
β
n
H^*(n) = P n^e \beta^n
H∗(n)=Pneβn
The form of the special solution is
H
∗
(
n
)
=
P
n
1
2
n
=
P
n
2
n
H^*(n) = P n^1 2^n = Pn2^n
H∗(n)=Pn12n=Pn2n , among
P
P
P Is constant ;
The special solution is substituted into the above recursive equation :
P
n
2
n
−
5
P
(
n
−
1
)
2
n
−
1
+
6
P
(
n
−
2
)
2
n
−
2
=
2
n
Pn2^n - 5P(n-1)2^{n-1} + 6P(n-2)2^{n-2} = 2^n
Pn2n−5P(n−1)2n−1+6P(n−2)2n−2=2n
All items are constructed
2
n
2^n
2n
P
n
2
n
−
5
P
(
n
−
1
)
2
n
2
+
6
P
(
n
−
2
)
2
n
4
=
2
n
Pn2^n - \cfrac{5P(n-1)2^{n}}{2} + \cfrac{6P(n-2)2^n}{4} = 2^n
Pn2n−25P(n−1)2n+46P(n−2)2n=2n
Divide left and right by
2
n
2^n
2n
P
n
−
5
P
(
n
−
1
)
2
+
3
P
(
n
−
2
)
2
=
1
Pn - \cfrac{5P(n-1)}{2} + \cfrac{3P(n-2)}{2} = 1
Pn−25P(n−1)+23P(n−2)=1
P
n
−
5
P
n
2
+
5
P
2
+
3
P
n
2
−
3
P
=
1
Pn - \cfrac{5Pn}{2} + \cfrac{5P}{2} + \cfrac{3Pn}{2} -3P = 1
Pn−25Pn+25P+23Pn−3P=1
5
P
2
−
3
P
=
1
\cfrac{5P}{2} -3P = 1
25P−3P=1
−
P
2
=
1
-\cfrac{P}{2} = 1
−2P=1
P
=
−
2
P=-2
P=−2
The form of special solution
H
∗
(
n
)
=
P
n
2
n
H^*(n) = Pn2^n
H∗(n)=Pn2n , among
P
P
P Constant value is
−
2
-2
−2 ;
The special solution is
H
∗
(
n
)
=
−
2
n
2
n
H^*(n) = -2n2^n
H∗(n)=−2n2n
边栏推荐
- TensorBoard快速入门(Pytorch使用TensorBoard)
- visual studio “通常每个套接字地址(协议/网络地址/端口)只允许使用一次“
- SVN如何查看修改的文件记录
- 图之深度优先搜索
- 数仓任务里面 跑SQL任务的时候用的数据库账号是在哪里配置的
- 27. Input 3 integers and output them in descending order. Pointer method is required.
- How do large consumer enterprises make digital transformation?
- Golang unit test, mock test and benchmark test
- Test your trained model
- 毕业总结
猜你喜欢

The largest matrix (H) in a brush 143 monotone stack 84 histogram

Swm32 series Tutorial 4 port mapping and serial port application

Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires

【Try to Hack】主动侦查隐藏技术

The most complete postman interface test tutorial in the whole network, API interface test
![[error reporting] omp: error 15: initializing libiomp5md dll, but found libiomp5md. dll already initialized.](/img/a0/4fc0e0741aad2885873e60f2af3387.jpg)
[error reporting] omp: error 15: initializing libiomp5md dll, but found libiomp5md. dll already initialized.

大消费企业怎样做数字化转型?

Redis:关于列表List类型数据的操作命令

图之深度优先搜索

Free data | new library online | cnopendata complete data of China's insurance intermediary outlets
随机推荐
Redis:关于列表List类型数据的操作命令
IntelliJ 2021.3 short command line when running applications
1164 Good in C
vs code 插件 koroFileHeader
Take you to API development by hand
Where is the monitoring page of RDS database?
First day of rhcsa study
Open vsftpd port under iptables firewall
Notes on problems -- watching videos on edge will make the screen green
Pools de Threads: les composants les plus courants et les plus sujets aux erreurs du Code d'affaires
Host based intrusion system IDS
Kubernetes resource object introduction and common commands (4)
Analysis of variance summary
PHP online confusion encryption tutorial sharing + basically no solution
September, 19, "cam principle and application" online assignment [Full Score answer]
One brush 145 force deduction hot question-2 sum of two numbers (m)
RDS数据库的监测页面在哪看?
vs2013已阻止安装程序,需安装IE10
The difference between get and post
One brush 146 force buckle hot question-3 longest substring without repeated characters (m)