当前位置:网站首页>[combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
[combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
2022-07-03 16:53:00 【Programmer community】
List of articles
- One 、 Characteristic equation and characteristic root
- Two 、 Characteristic equation and characteristic root Example ( important )
One 、 Characteristic equation and characteristic root
Standard form of linear homogeneous recurrence equation with constant coefficients :
{
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H
(
0
)
=
b
0
,
H
(
1
)
=
b
1
,
H
(
2
)
=
b
2
,
⋯
,
H
(
k
−
1
)
=
b
k
−
1
\begin{cases} H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0 \\\\ H(0) = b_0 , H(1) = b_1 , H(2) = b_2 , \cdots , H(k-1) = b_{k-1} \end{cases}
⎩⎪⎨⎪⎧H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0H(0)=b0,H(1)=b1,H(2)=b2,⋯,H(k−1)=bk−1
Constant coefficient It refers to the sequence of numbers Before item coefficient
a
1
,
a
2
,
⋯
,
a
k
a_1 , a_2 , \cdots , a_k
a1,a2,⋯,ak It's all constant ,
a
k
≠
0
a_k \not=0
ak=0 ;
b
0
,
b
1
,
b
2
,
⋯
,
b
k
−
1
b_0 , b_1, b_2 , \cdots , b_{k-1}
b0,b1,b2,⋯,bk−1 yes Recursive equation
k
−
1
k-1
k−1 An initial value ;
Write the characteristic equation :
x
k
−
a
1
x
k
−
1
−
⋯
−
a
k
=
0
x^k - a_1x^{k-1} - \cdots - a^k = 0
xk−a1xk−1−⋯−ak=0
Characteristic equation 、 The number of terms of the recursive equation 、 The sub idempotent of the characteristic equation :
Characteristic equation 、 The number of terms of the recursive equation : Number of characteristic equation terms And Constant coefficient linear homogeneous The number of recursion equation terms is the same , Yes
k
+
1
k+1
k+1 term ;
The sub idempotent of the characteristic equation : All in all
k
+
1
k+1
k+1 term , Characteristic equation term
x
x
x Power of power from
k
k
k To
0
0
0 , All in all
k
+
1
k + 1
k+1 term ;
Recurrence equation And Characteristic equation relation :
x
k
x^k
xk The coefficient before
1
1
1 Corresponding
H
(
n
)
H(n)
H(n) Coefficient before item
1
1
1 ;
x
k
−
1
x^{k-1}
xk−1 The coefficient before
−
a
1
-a_1
−a1 Corresponding
H
(
n
−
1
)
H(n-1)
H(n−1) Coefficient before item
−
a
1
-a_1
−a1 ;
⋮
\vdots
⋮
x
0
x^{0}
x0 The coefficient before
−
a
k
-a_k
−ak Corresponding
H
(
n
−
k
)
H(n-k)
H(n−k) Coefficient before item
−
a
k
-a_k
−ak ;
from Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0
Can export
1
1
1 element
k
k
k Sub characteristic equation :
x
k
−
a
1
x
k
−
1
−
⋯
−
a
k
=
0
x^k - a_1x^{k-1} - \cdots - a^k = 0
xk−a1xk−1−⋯−ak=0
The
1
1
1 element
k
k
k Sub characteristic equation be called Of the original recursive equation Characteristic equation ;
The
1
1
1 element
k
k
k Sub characteristic equation Yes
k
k
k A root , be called Recurrence equation The characteristic root of the ;
From recurrence equation to characteristic equation ( a key ) :
- The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
0
0
0 ;
- Number of terms of characteristic equation : determine Number of terms of characteristic equation , And The recurrence equation has the same number of terms ;
- The characteristic equation is sub idempotent : The highest power is Number of terms of characteristic equation
−
1
-1
0
0
0 ;
−1 , Lowest power
- Write There is no coefficient The characteristic equation of ;
- The coefficients of the recursive equation will be deduced bit by bit Copy Into the characteristic equation ;
Solve the above characteristic equation , You can get the characteristic root , Generally, it is a quadratic equation with one variable ;
Univariate quadratic equation form
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
ax2+bx+c=0
The solution is :
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
Two 、 Characteristic equation and characteristic root Example ( important )
1 . Fibonacci sequence example :
( 1 ) Fibonacci sequence :
1
,
1
,
2
,
3
,
5
,
8
,
13
,
⋯
1 , 1 , 2 , 3 , 5 , 8 , 13 , \cdots
1,1,2,3,5,8,13,⋯
( 2 ) Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
describe : The first
n
n
n Item equal to
n
−
1
n-1
n−1 term and The first
n
−
2
n-2
n−2 Sum of items ;
Such as : The first
4
4
4 Item value
F
(
4
)
=
5
F(4) = 5
F(4)=5 , Is equal to
The first
4
−
1
=
3
4-1=3
4−1=3 Item value
F
(
4
−
1
)
=
F
(
3
)
=
3
F(4-1)=F(3) = 3
F(4−1)=F(3)=3
add The first
4
−
2
=
2
4-2=2
4−2=2 Item value
F
(
4
−
2
)
=
F
(
2
)
=
2
F(4-2) = F(2) =2
F(4−2)=F(2)=2 ;
( 3 ) initial value :
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1 , F(1) = 1
F(0)=1,F(1)=1
according to
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1, F(1) = 1
F(0)=1,F(1)=1 You can calculate
F
(
2
)
F(2)
F(2) , according to
F
(
1
)
,
F
(
2
)
F(1),F(2)
F(1),F(2) You can calculate
F
(
3
)
F(3)
F(3) , according to
F
(
2
)
F
(
3
)
F(2)F(3)
F(2)F(3) Sure Calculation
F
(
4
)
F(4)
F(4) ,
⋯
\cdots
⋯ , according to
F
(
n
−
2
)
,
F
(
n
−
1
)
F(n-2) , F(n-1)
F(n−2),F(n−1) You can calculate
F
(
n
)
F(n)
F(n) ;
2 . Write the characteristic equation of Fibonacci sequence :
Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
( 1 ) The standard form of recurrence equation :
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0
( 2 ) Recursive equation writing :
① First determine the number of terms of the characteristic equation : The same number of terms as the recursive equation ,
3
3
3 term ;
② In determining the characteristic equation
x
x
x Power of power : from
3
−
1
=
2
3-1=2
3−1=2 To
0
0
0 ;
③ Write a recurrence equation without coefficients :
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0
④ Filling factor : Then the characteristic equation without coefficients
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0 And
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0 The coefficients of corresponding bits are filled into the characteristic equation :
x
2
x^2
x2 The coefficient before Corresponding
F
(
n
)
F(n)
F(n) Coefficient before item
1
1
1 ;
x
1
x^1
x1 The coefficient before Corresponding
F
(
n
−
1
)
F(n-1)
F(n−1) Coefficient before item
−
1
-1
−1 ;
x
0
x^0
x0 The coefficient before Corresponding
F
(
n
−
2
)
F(n-2)
F(n−2) Coefficient before item
−
1
-1
−1 ;
Then the final The characteristic equation is
1
x
2
+
(
−
1
)
x
1
+
(
−
1
)
x
0
=
0
1 x^2 + (-1)x^1 + (-1)x^0 = 0
1x2+(−1)x1+(−1)x0=0 , It is reduced to :
x
2
−
x
−
1
=
0
x^2 - x - 1 = 0
x2−x−1=0
The characteristic root of the characteristic equation is : The solution of the above equation is the characteristic root , Generally, it is a quadratic equation with one variable ;
x
=
1
±
5
2
x = \cfrac{1 \pm \sqrt{5}}{2}
x=21±5
Reference resources : Univariate quadratic equation form
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
ax2+bx+c=0
The solution is :x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
边栏推荐
- 静态程序分析(一)—— 大纲思维导图与内容介绍
- [combinatorial mathematics] counting model, common combinatorial numbers and combinatorial identities**
- 斑馬識別成狗,AI犯錯的原因被斯坦福找到了
- 【剑指 Offer 】57 - II. 和为s的连续正数序列
- The way of wisdom (unity of knowledge and action)
- 27. 输入3个整数,按从大到小的次序输出。要求用指针方法实现。
- Atom QT 16_ audiorecorder
- Pytorch 1.12 was released, officially supporting Apple M1 chip GPU acceleration and repairing many bugs
- Mysql 将逗号隔开的属性字段数据由列转行
- 斑马识别成狗,AI犯错的原因被斯坦福找到了
猜你喜欢

word 退格键删除不了选中文本,只能按delete

Two sides of the evening: tell me about the bloom filter and cuckoo filter? Application scenario? I'm confused..

(补)双指针专题

Kotlin学习快速入门(7)——扩展的妙用

What material is 13crmo4-5 equivalent to in China? 13crmo4-5 chemical composition 13crmo4-5 mechanical properties

A survey of state of the art on visual slam

CC2530 common registers for port interrupts

IDEA-配置插件

What is the maximum number of concurrent TCP connections for a server? 65535?
智慧之道(知行合一)
随机推荐
[combinatorics] recursive equation (outline of recursive equation content | definition of recursive equation | example description of recursive equation | Fibonacci Series)
中南大学|通过探索理解: 发现具有深度强化学习的可解释特征
C语言按行修改文件
Two sides of the evening: tell me about the bloom filter and cuckoo filter? Application scenario? I'm confused..
【剑指 Offer 】57 - II. 和为s的连续正数序列
Mysql 单表字段重复数据取最新一条sql语句
What is the material of 13mnnimor? 13mnnimor steel plate for medium and low temperature pressure vessels
远程办公之如何推进跨部门项目协作 | 社区征文
Résolution de l'instance d'assemblage - - affichage à l'écran en mode réel
[2. Basics of Delphi grammar] 1 Identifiers and reserved words
BYD and great wall hybrid market "get together" again
关于视觉SLAM的最先进技术的调查-A survey of state-of-the-art on visual SLAM
Kotlin学习快速入门(7)——扩展的妙用
Atom QT 16_ audiorecorder
word 退格键删除不了选中文本,只能按delete
NSQ source code installation and operation process
Mongodb installation and basic operation
Svn usage specification
LeetCode 1658. Minimum operand to reduce x to 0
RF analyze demo build step by step