当前位置:网站首页>[combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
[combinatorics] recursive equation (characteristic equation and characteristic root | example of characteristic equation | root formula of monadic quadratic equation)
2022-07-03 16:53:00 【Programmer community】
List of articles
- One 、 Characteristic equation and characteristic root
- Two 、 Characteristic equation and characteristic root Example ( important )
One 、 Characteristic equation and characteristic root
Standard form of linear homogeneous recurrence equation with constant coefficients :
{
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H
(
0
)
=
b
0
,
H
(
1
)
=
b
1
,
H
(
2
)
=
b
2
,
⋯
,
H
(
k
−
1
)
=
b
k
−
1
\begin{cases} H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0 \\\\ H(0) = b_0 , H(1) = b_1 , H(2) = b_2 , \cdots , H(k-1) = b_{k-1} \end{cases}
⎩⎪⎨⎪⎧H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0H(0)=b0,H(1)=b1,H(2)=b2,⋯,H(k−1)=bk−1
Constant coefficient It refers to the sequence of numbers Before item coefficient
a
1
,
a
2
,
⋯
,
a
k
a_1 , a_2 , \cdots , a_k
a1,a2,⋯,ak It's all constant ,
a
k
≠
0
a_k \not=0
ak=0 ;
b
0
,
b
1
,
b
2
,
⋯
,
b
k
−
1
b_0 , b_1, b_2 , \cdots , b_{k-1}
b0,b1,b2,⋯,bk−1 yes Recursive equation
k
−
1
k-1
k−1 An initial value ;
Write the characteristic equation :
x
k
−
a
1
x
k
−
1
−
⋯
−
a
k
=
0
x^k - a_1x^{k-1} - \cdots - a^k = 0
xk−a1xk−1−⋯−ak=0
Characteristic equation 、 The number of terms of the recursive equation 、 The sub idempotent of the characteristic equation :
Characteristic equation 、 The number of terms of the recursive equation : Number of characteristic equation terms And Constant coefficient linear homogeneous The number of recursion equation terms is the same , Yes
k
+
1
k+1
k+1 term ;
The sub idempotent of the characteristic equation : All in all
k
+
1
k+1
k+1 term , Characteristic equation term
x
x
x Power of power from
k
k
k To
0
0
0 , All in all
k
+
1
k + 1
k+1 term ;
Recurrence equation And Characteristic equation relation :
x
k
x^k
xk The coefficient before
1
1
1 Corresponding
H
(
n
)
H(n)
H(n) Coefficient before item
1
1
1 ;
x
k
−
1
x^{k-1}
xk−1 The coefficient before
−
a
1
-a_1
−a1 Corresponding
H
(
n
−
1
)
H(n-1)
H(n−1) Coefficient before item
−
a
1
-a_1
−a1 ;
⋮
\vdots
⋮
x
0
x^{0}
x0 The coefficient before
−
a
k
-a_k
−ak Corresponding
H
(
n
−
k
)
H(n-k)
H(n−k) Coefficient before item
−
a
k
-a_k
−ak ;
from Recurrence equation :
H
(
n
)
−
a
1
H
(
n
−
1
)
−
a
2
H
(
n
−
2
)
−
⋯
−
a
k
H
(
n
−
k
)
=
0
H(n) - a_1H(n-1) - a_2H(n-2) - \cdots - a_kH(n-k) = 0
H(n)−a1H(n−1)−a2H(n−2)−⋯−akH(n−k)=0
Can export
1
1
1 element
k
k
k Sub characteristic equation :
x
k
−
a
1
x
k
−
1
−
⋯
−
a
k
=
0
x^k - a_1x^{k-1} - \cdots - a^k = 0
xk−a1xk−1−⋯−ak=0
The
1
1
1 element
k
k
k Sub characteristic equation be called Of the original recursive equation Characteristic equation ;
The
1
1
1 element
k
k
k Sub characteristic equation Yes
k
k
k A root , be called Recurrence equation The characteristic root of the ;
From recurrence equation to characteristic equation ( a key ) :
- The standard form of recurrence equation : Write the recurrence equation Standard form , All items are to the left of the equal sign , On the right is
0
0
0 ;
- Number of terms of characteristic equation : determine Number of terms of characteristic equation , And The recurrence equation has the same number of terms ;
- The characteristic equation is sub idempotent : The highest power is Number of terms of characteristic equation
−
1
-1
0
0
0 ;
−1 , Lowest power
- Write There is no coefficient The characteristic equation of ;
- The coefficients of the recursive equation will be deduced bit by bit Copy Into the characteristic equation ;
Solve the above characteristic equation , You can get the characteristic root , Generally, it is a quadratic equation with one variable ;
Univariate quadratic equation form
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
ax2+bx+c=0
The solution is :
x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
Two 、 Characteristic equation and characteristic root Example ( important )
1 . Fibonacci sequence example :
( 1 ) Fibonacci sequence :
1
,
1
,
2
,
3
,
5
,
8
,
13
,
⋯
1 , 1 , 2 , 3 , 5 , 8 , 13 , \cdots
1,1,2,3,5,8,13,⋯
( 2 ) Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
describe : The first
n
n
n Item equal to
n
−
1
n-1
n−1 term and The first
n
−
2
n-2
n−2 Sum of items ;
Such as : The first
4
4
4 Item value
F
(
4
)
=
5
F(4) = 5
F(4)=5 , Is equal to
The first
4
−
1
=
3
4-1=3
4−1=3 Item value
F
(
4
−
1
)
=
F
(
3
)
=
3
F(4-1)=F(3) = 3
F(4−1)=F(3)=3
add The first
4
−
2
=
2
4-2=2
4−2=2 Item value
F
(
4
−
2
)
=
F
(
2
)
=
2
F(4-2) = F(2) =2
F(4−2)=F(2)=2 ;
( 3 ) initial value :
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1 , F(1) = 1
F(0)=1,F(1)=1
according to
F
(
0
)
=
1
,
F
(
1
)
=
1
F(0) = 1, F(1) = 1
F(0)=1,F(1)=1 You can calculate
F
(
2
)
F(2)
F(2) , according to
F
(
1
)
,
F
(
2
)
F(1),F(2)
F(1),F(2) You can calculate
F
(
3
)
F(3)
F(3) , according to
F
(
2
)
F
(
3
)
F(2)F(3)
F(2)F(3) Sure Calculation
F
(
4
)
F(4)
F(4) ,
⋯
\cdots
⋯ , according to
F
(
n
−
2
)
,
F
(
n
−
1
)
F(n-2) , F(n-1)
F(n−2),F(n−1) You can calculate
F
(
n
)
F(n)
F(n) ;
2 . Write the characteristic equation of Fibonacci sequence :
Recurrence equation :
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n) = F(n-1) + F(n-2)
F(n)=F(n−1)+F(n−2)
( 1 ) The standard form of recurrence equation :
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0
( 2 ) Recursive equation writing :
① First determine the number of terms of the characteristic equation : The same number of terms as the recursive equation ,
3
3
3 term ;
② In determining the characteristic equation
x
x
x Power of power : from
3
−
1
=
2
3-1=2
3−1=2 To
0
0
0 ;
③ Write a recurrence equation without coefficients :
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0
④ Filling factor : Then the characteristic equation without coefficients
x
2
+
x
1
+
x
0
=
0
x^2 + x^1 + x^0 = 0
x2+x1+x0=0 And
F
(
n
)
−
F
(
n
−
1
)
−
F
(
n
−
2
)
=
0
F(n) - F(n-1) - F(n-2) = 0
F(n)−F(n−1)−F(n−2)=0 The coefficients of corresponding bits are filled into the characteristic equation :
x
2
x^2
x2 The coefficient before Corresponding
F
(
n
)
F(n)
F(n) Coefficient before item
1
1
1 ;
x
1
x^1
x1 The coefficient before Corresponding
F
(
n
−
1
)
F(n-1)
F(n−1) Coefficient before item
−
1
-1
−1 ;
x
0
x^0
x0 The coefficient before Corresponding
F
(
n
−
2
)
F(n-2)
F(n−2) Coefficient before item
−
1
-1
−1 ;
Then the final The characteristic equation is
1
x
2
+
(
−
1
)
x
1
+
(
−
1
)
x
0
=
0
1 x^2 + (-1)x^1 + (-1)x^0 = 0
1x2+(−1)x1+(−1)x0=0 , It is reduced to :
x
2
−
x
−
1
=
0
x^2 - x - 1 = 0
x2−x−1=0
The characteristic root of the characteristic equation is : The solution of the above equation is the characteristic root , Generally, it is a quadratic equation with one variable ;
x
=
1
±
5
2
x = \cfrac{1 \pm \sqrt{5}}{2}
x=21±5
Reference resources : Univariate quadratic equation form
a
x
2
+
b
x
+
c
=
0
ax^2 + bx + c = 0
ax2+bx+c=0
The solution is :x
=
−
b
±
b
2
−
4
a
c
2
a
x = \cfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
x=2a−b±b2−4ac
边栏推荐
- Register in PHP_ Globals parameter settings
- Cocos Creator 2. X automatic packaging (build + compile)
- Mysql database DDL and DML
- [sword finger offer] 58 - I. flip the word order
- Kindeditor editor upload image ultra wide automatic compression -php code
- 定义一个结构体Fraction,表示分数,用于表示 2/3, 5/6这样的分数
- 2022 love analysis · panoramic report of digital manufacturers of state-owned enterprises
- Is it safe to open a stock account by mobile registration? Does it need money to open an account
- [combinatorial mathematics] recursive equation (example of recursive equation 2 Hanoi Tower | example of recursive equation 3 insertion sequencing)
- What is the maximum number of concurrent TCP connections for a server? 65535?
猜你喜欢
New features of C 10
爱可可AI前沿推介(7.3)
Static program analysis (I) -- Outline mind map and content introduction
Le zèbre a été identifié comme un chien, et la cause de l'erreur d'AI a été trouvée par Stanford
Aike AI frontier promotion (7.3)
(Supplement) double pointer topic
NLP四范式:范式一:非神经网络时代的完全监督学习(特征工程);范式二:基于神经网络的完全监督学习(架构工程);范式三:预训练,精调范式(目标工程);范式四:预训练,提示,预测范式(Prompt工程)
Idea configuration plug-in
斑马识别成狗,AI犯错的原因被斯坦福找到了
To resist 7-Zip, list "three sins"? Netizen: "is the third key?"
随机推荐
數據分析必備的能力
关于学习Qt编程的好书精品推荐
Kindeditor editor upload image ultra wide automatic compression -php code
Mongodb installation and basic operation
定义一个结构体Fraction,表示分数,用于表示 2/3, 5/6这样的分数
The way of wisdom (unity of knowledge and action)
Central South University | through exploration and understanding: find interpretable features with deep reinforcement learning
What material is 13crmo4-5 equivalent to in China? 13crmo4-5 chemical composition 13crmo4-5 mechanical properties
Is it safe to open a stock account by mobile registration? Does it need money to open an account
MySQL user management
There are several APIs of airtest and poco that are easy to use wrong in "super". See if you have encountered them
arduino-esp32:LVGL项目(一)整体框架
CC2530 common registers for port interrupts
[combinatorial mathematics] counting model, common combinatorial numbers and combinatorial identities**
Atom QT 16_ audiorecorder
JSON 与 BSON 区别
关于视觉SLAM的最先进技术的调查-A survey of state-of-the-art on visual SLAM
香港理工大学|数据高效的强化学习和网络流量动态的自适应最优周界控制
LeetCode 1658. Minimum operand to reduce x to 0
建立自己的网站(23)