当前位置:网站首页>[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
2022-07-03 18:18:00 【Programmer community】
List of articles
- One 、 Properties of exponential generating function
- Two 、 The exponential generating function solves the arrangement of multiple sets
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
One 、 Properties of exponential generating function
Two sequences
{
a
n
}
,
{
b
n
}
\{a_n\} , \{b_n\}
{ an},{ bn} The corresponding exponential generating functions are
A
e
(
x
)
,
B
e
(
x
)
A_e(x) , B_e(x)
Ae(x),Be(x) ,
Put the above two Exponential generating function Multiply , As a function , It can be expanded into another series ,
A
e
(
x
)
⋅
B
e
(
x
)
=
∑
n
=
0
∞
c
n
x
n
n
!
A_e(x) \cdot B_e(x) = \sum\limits_{n=0}^{\infty} c_n \cfrac{x^n}{n!}
Ae(x)⋅Be(x)=n=0∑∞cnn!xn
among ,
c
n
=
∑
k
=
0
∞
(
n
k
)
a
k
b
n
−
k
c_n =\sum\limits_{k=0}^{\infty}\dbinom{n}{k}a_kb_{n-k}
cn=k=0∑∞(kn)akbn−k
( The result can be obtained by substituting )
Two 、 The exponential generating function solves the arrangement of multiple sets
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
x
r
r
!
\cfrac{x^r}{r!}
r!xr The coefficient of is the permutation number of multiple sets , Pay special attention if not
x
r
r
!
\cfrac{x^r}{r!}
r!xr form , It needs to be forcibly transformed into the above properties , Be sure to divide by
r
!
r!
r! ; *****
Select the problem reference :
n
n
n Meta set
S
S
S , from
S
S
S Select... From the set
r
r
r Elements ;
according to Whether the element can be repeated , Whether the selection process is orderly , The selection question is divided into four sub types :
Elements do not repeat | Elements can be repeated | |
---|---|---|
Orderly selection | Set arrangement P ( n , r ) P(n,r) P(n,r) | Multiset arrangement |
Unordered selection | Set combination C ( n , r ) C(n,r) C(n,r) | Combination of multiple sets |
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
边栏推荐
- English grammar_ Adjective / adverb Level 3 - multiple expression
- Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
- SDNUOJ1015
- G1 garbage collector of garbage collector
- [Tongxin UOS] scanner device management driver installation
- PHP MySQL Update
- Inheritance of ES6 class
- List的stream中Long对象与long判等问题记录
- Codeforces Round #803 (Div. 2) C. 3SUM Closure
- How to expand the capacity of golang slice slice
猜你喜欢
Ml (machine learning) softmax function to realize the classification of simple movie categories
Computer graduation design PHP makeup sales Beauty shopping mall
win32:堆破壞的dump文件分析
Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028
List的stream中Long对象与long判等问题记录
Grammaire anglaise Nom - Classification
Talk about the design and implementation logic of payment process
Redis core technology and practice - learning notes (11): why not just string
What London Silver Trading software supports multiple languages
How to analyze the rising and falling rules of London gold trend chart
随机推荐
Bloom filter [proposed by bloom in 1970; redis cache penetration solution]
Redis core technology and practice - learning notes (VI) how to achieve data consistency between master and slave Libraries
How to expand the capacity of golang slice slice
Gear2021 monthly update - December
统计图像中各像素值的数量
聊聊支付流程的設計與實現邏輯
List的stream中Long对象与long判等问题记录
SDNUOJ1015
Image 24 bits de profondeur à 8 bits de profondeur
English語法_名詞 - 分類
微服务组件Sentinel控制台调用
[combinatorics] generating function (shift property)
PHP MySQL reads data
Change the single node of Postgres database into master-slave
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
Three gradient descent methods and code implementation
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
PHP MySQL inserts multiple pieces of data
STM32 realizes 74HC595 control
SQL injection -day16