当前位置:网站首页>[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
2022-07-03 18:18:00 【Programmer community】
List of articles
- One 、 Properties of exponential generating function
- Two 、 The exponential generating function solves the arrangement of multiple sets
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
One 、 Properties of exponential generating function
Two sequences
{
a
n
}
,
{
b
n
}
\{a_n\} , \{b_n\}
{ an},{ bn} The corresponding exponential generating functions are
A
e
(
x
)
,
B
e
(
x
)
A_e(x) , B_e(x)
Ae(x),Be(x) ,
Put the above two Exponential generating function Multiply , As a function , It can be expanded into another series ,
A
e
(
x
)
⋅
B
e
(
x
)
=
∑
n
=
0
∞
c
n
x
n
n
!
A_e(x) \cdot B_e(x) = \sum\limits_{n=0}^{\infty} c_n \cfrac{x^n}{n!}
Ae(x)⋅Be(x)=n=0∑∞cnn!xn
among ,
c
n
=
∑
k
=
0
∞
(
n
k
)
a
k
b
n
−
k
c_n =\sum\limits_{k=0}^{\infty}\dbinom{n}{k}a_kb_{n-k}
cn=k=0∑∞(kn)akbn−k
( The result can be obtained by substituting )
Two 、 The exponential generating function solves the arrangement of multiple sets
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
x
r
r
!
\cfrac{x^r}{r!}
r!xr The coefficient of is the permutation number of multiple sets , Pay special attention if not
x
r
r
!
\cfrac{x^r}{r!}
r!xr form , It needs to be forcibly transformed into the above properties , Be sure to divide by
r
!
r!
r! ; *****
Select the problem reference :
n
n
n Meta set
S
S
S , from
S
S
S Select... From the set
r
r
r Elements ;
according to Whether the element can be repeated , Whether the selection process is orderly , The selection question is divided into four sub types :
| Elements do not repeat | Elements can be repeated | |
|---|---|---|
| Orderly selection | Set arrangement P ( n , r ) P(n,r) P(n,r) | Multiset arrangement |
| Unordered selection | Set combination C ( n , r ) C(n,r) C(n,r) | Combination of multiple sets |
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
边栏推荐
- Analysis report on production and marketing demand and investment forecast of China's PVC industry from 2021 to 2026
- 分布式的任务分发框架-Gearman
- 一入“远程”终不悔,几人欢喜几人愁。| 社区征文
- 聊聊支付流程的设计与实现逻辑
- How to install PHP on Ubuntu 20.04
- Win 11 major updates, new features love love.
- Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
- What kind of experience is it when the Institute earns 20000 yuan a month?
- [untitled]
- Distributed task distribution framework gearman
猜你喜欢

English语法_形容词/副词3级 - 倍数表达

Summary and Reflection on the third week of winter vacation

English grammar_ Adjective / adverb Level 3 - multiple expression

How to expand the capacity of golang slice slice

Global and Chinese health care OEM and ODM market status survey and investment planning recommendations report 2022-2028

Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals

2022-2028 global lithium battery copper foil industry research and trend analysis report

Investigation on the operation prospect of the global and Chinese Anti enkephalinase market and analysis report on the investment strategy of the 14th five year plan 2022-2028

Talk about the design and implementation logic of payment process

Grammaire anglaise Nom - Classification
随机推荐
SDNUOJ1015
PHP MySQL where clause
Redis on local access server
2022-2028 global lithium battery copper foil industry research and trend analysis report
Theoretical description of linear equations and summary of methods for solving linear equations by eigen
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
Have you learned the correct expression posture of programmers on Valentine's day?
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
PHP MySQL create database
How to track the real-time trend of Bank of London
The vscode code is automatically modified to a compliance code when it is formatted and saved
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
MySQL has been stopped in the configuration interface during installation
SQL injection -day16
Enterprise custom form engine solution (12) -- form rule engine 2
Investigation on the operation prospect of the global and Chinese Anti enkephalinase market and analysis report on the investment strategy of the 14th five year plan 2022-2028
Prototype inheritance..
[教程]在 CoreOS 上构建你的第一个应用
一入“远程”终不悔,几人欢喜几人愁。| 社区征文
Closure and closure function