当前位置:网站首页>[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
[combinatorics] exponential generating function (properties of exponential generating function | exponential generating function solving multiple set arrangement)
2022-07-03 18:18:00 【Programmer community】
List of articles
- One 、 Properties of exponential generating function
- Two 、 The exponential generating function solves the arrangement of multiple sets
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
- 【 Combinatorial mathematics 】 Exponential generating function ( The concept of exponential generating function | Permutation number exponential generating function = General generating function of combinatorial number | Example of exponential generating function )
One 、 Properties of exponential generating function
Two sequences
{
a
n
}
,
{
b
n
}
\{a_n\} , \{b_n\}
{ an},{ bn} The corresponding exponential generating functions are
A
e
(
x
)
,
B
e
(
x
)
A_e(x) , B_e(x)
Ae(x),Be(x) ,
Put the above two Exponential generating function Multiply , As a function , It can be expanded into another series ,
A
e
(
x
)
⋅
B
e
(
x
)
=
∑
n
=
0
∞
c
n
x
n
n
!
A_e(x) \cdot B_e(x) = \sum\limits_{n=0}^{\infty} c_n \cfrac{x^n}{n!}
Ae(x)⋅Be(x)=n=0∑∞cnn!xn
among ,
c
n
=
∑
k
=
0
∞
(
n
k
)
a
k
b
n
−
k
c_n =\sum\limits_{k=0}^{\infty}\dbinom{n}{k}a_kb_{n-k}
cn=k=0∑∞(kn)akbn−k
( The result can be obtained by substituting )
Two 、 The exponential generating function solves the arrangement of multiple sets
Multiple sets
S
=
{
n
1
⋅
a
1
,
n
2
⋅
a
2
,
⋯
,
n
k
⋅
a
k
}
S=\{ n_1 \cdot a_1 , n_2 \cdot a_2 , \cdots , n_k \cdot a_k \}
S={ n1⋅a1,n2⋅a2,⋯,nk⋅ak}
Multiple sets
S
S
S Of
r
r
r Number of permutations Composition sequence
{
a
r
}
\{ a_r \}
{ ar} , The corresponding exponential generating function is :
G
e
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
f
n
k
(
x
)
G_e(x) = f_{n_1}(x) f_{n_2}(x) \cdots f_{n_k}(x)
Ge(x)=fn1(x)fn2(x)⋯fnk(x) *
Each generated function item
f
n
i
(
x
)
f_{n_i}(x)
fni(x) yes
f
n
i
(
x
)
=
1
+
x
+
x
2
2
!
+
⋯
+
x
n
i
n
i
!
f_{n_i}(x) = 1 + x + \cfrac{x^2}{2!} + \cdots + \cfrac{x^{n_i}}{n_i!}
fni(x)=1+x+2!x2+⋯+ni!xni *
take
G
e
(
x
)
G_e(x)
Ge(x) an , Among them
x
r
r
!
\cfrac{x^r}{r!}
r!xr The coefficient of is the permutation number of multiple sets , Pay special attention if not
x
r
r
!
\cfrac{x^r}{r!}
r!xr form , It needs to be forcibly transformed into the above properties , Be sure to divide by
r
!
r!
r! ; *****
Select the problem reference :
n
n
n Meta set
S
S
S , from
S
S
S Select... From the set
r
r
r Elements ;
according to Whether the element can be repeated , Whether the selection process is orderly , The selection question is divided into four sub types :
| Elements do not repeat | Elements can be repeated | |
|---|---|---|
| Orderly selection | Set arrangement P ( n , r ) P(n,r) P(n,r) | Multiset arrangement |
| Unordered selection | Set combination C ( n , r ) C(n,r) C(n,r) | Combination of multiple sets |
Select the question :
- Non repeatable elements , Orderly selection , Corresponding Arrangement of sets ;
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \dfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n!
- Non repeatable elements , Unordered selection , Corresponding A combination of sets ;
C
(
n
,
r
)
=
P
(
n
,
r
)
r
!
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!}
C(n,r)=r!P(n,r)=r!(n−r)!n!
- Repeatable elements , Orderly selection , Corresponding Arrangement of multiple sets ;
whole
row
Column
=
n
!
n
1
!
n
2
!
⋯
n
k
!
Full Permutation = \cfrac{n!}{n_1! n_2! \cdots n_k!}
whole row Column =n1!n2!⋯nk!n! , Incomplete permutation
k
r
,
r
≤
n
i
k^r , \ \ r\leq n_i
kr, r≤ni
- Repeatable elements , Unordered selection , Corresponding Combination of multiple sets ;
N
=
C
(
k
+
r
−
1
,
r
)
N= C(k + r - 1, r)
N=C(k+r−1,r)
边栏推荐
- Redis core technology and practice - learning notes (IX): slicing cluster
- 一入“远程”终不悔,几人欢喜几人愁。| 社区征文
- 2022-2028 global lithium battery copper foil industry research and trend analysis report
- Solve the problem of inaccurate network traffic monitored by ZABBIX with SNMP
- [combinatorics] generating function (example of generating function | calculating generating function with given general term formula | calculating general term formula with given generating function)
- SDNUOJ1015
- Image 24 bit depth to 8 bit depth
- Kotlin's collaboration: Context
- 图像24位深度转8位深度
- Count the number of pixel values in the image
猜你喜欢

Valentine's day, send you a little red flower~
![AcWing 271. Teacher Yang's photographic arrangement [multidimensional DP]](/img/3d/6d61fefc62063596221f98999a863b.png)
AcWing 271. Teacher Yang's photographic arrangement [multidimensional DP]

Five problems of database operation in commodity supermarket system

模块九作业

Redis core technology and practice - learning notes (IX): slicing cluster

Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028
![The number of incremental paths in the grid graph [dfs reverse path + memory dfs]](/img/57/ff494db248171253996dd6c9110715.png)
The number of incremental paths in the grid graph [dfs reverse path + memory dfs]
![[combinatorics] generating function (summation property)](/img/74/e6ef8ee69ed07d62df9f213c015f2c.jpg)
[combinatorics] generating function (summation property)

聊聊支付流程的設計與實現邏輯
![[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)](/img/e6/9880e708aed42dc82c94aea002020c.jpg)
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
随机推荐
Computer graduation project PHP library book borrowing management system
As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
Research on Swift
[combinatorics] generating function (summation property)
Postfix tips and troubleshooting commands
Golang string (string) and byte array ([]byte) are converted to each other
A. Berland Poker & 1000 [simple mathematical thinking]
Distributed task distribution framework gearman
[combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation)
SQL injection -day16
Image 24 bits de profondeur à 8 bits de profondeur
OpenSSL的SSL/BIO_get_fd
How do microservices aggregate API documents? This wave of operation is too good
Image 24 bit depth to 8 bit depth
Enterprise custom form engine solution (12) -- form rule engine 2
Kotlin's collaboration: Context
List的stream中Long对象与long判等问题记录
[combinatorics] generating function (positive integer splitting | unordered non repeated splitting example)
模块九作业
分布式的任务分发框架-Gearman