当前位置:网站首页>Mathematics - Properties of Summation Symbols
Mathematics - Properties of Summation Symbols
2022-08-05 03:25:00 【Code_LT】
1. single sum
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
Abbreviated above,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X Usually can be abbreviated as ∑ x i ,Indicates to accumulate all x i 可取的值 \sum_{x_i \in X}Usually can be abbreviated as \sum_{x_i},Indicates to accumulate allx_i可取的值 xi∈X∑Usually can be abbreviated as xi∑,Indicates to accumulate allxi可取的值
2. 多重求和
Take the double summation as an example:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = If it is expanded again, it will be omitted \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=If it is expanded again, it will be omitted i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=If it is expanded again, it will be omitted
2.1 性质1,The symbol order can be changed
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,When the range of a summation is limited by another variable,The commutative law does not apply,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)Can be seen as a function f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),A more general form is obtained:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
Keep the premise of interchangeability in mind:x,y,z的取值范围,相互没有影响.
2.1 性质2,Symbols can be found separately
有时候,为了求解的方便,We don't want functions f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)written as a whole,Instead, they are separated and evaluated separately.
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,zThe range of values should also satisfy each other without affecting each other,A simple proof can be done by expanding the calculation.
The advantage of the above properties is that,Complex problems can be divided into three parts and calculated separately,再求乘积.
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- Developing Hololens encountered The type or namespace name 'HandMeshVertex' could not be found..
- Summary of domestic environments supported by SuperMap
- 剑指Offer--找出数组中重复的数字(三种解法)
- [论文笔记] MapReduce: Simplified Data Processing on Large Clusters
- Web3.0 Dapps - the road to the future financial world
- How to sort multiple fields and multiple values in sql statement
- Use Unity to publish APP to Hololens2 without pit tutorial
- (11) Metaclass
- undo problem
- 使用二维码传输文件的小工具 - QFileTrans 1.2.0.1
猜你喜欢

用Unity发布APP到Hololens2无坑教程

In 2022, you still can't "low code"?Data science can also play with Low-Code!

Never put off till tomorrow what you can put - house lease management system based on the SSM

今年七夕,「情蔬」比礼物更有爱

毕设-基于SSM房屋租赁管理系统

.NET应用程序--Helloworld(C#)

leetcode-每日一题1403. 非递增顺序的最小子序列(贪心)

为什么pca分量没有关联

Beyond YOLO5-Face | YOLO-FaceV2 officially open source Trick+ academic point full

腾讯云【Hiflow】新时代自动化工具
随机推荐
YYGH-13-Customer Service Center
Open-Falcon of operation and maintenance monitoring system
On governance and innovation, the 2022 OpenAtom Global Open Source Summit OpenAnolis sub-forum came to a successful conclusion
STM32 uses stm32cubemx LL library series tutorial
rpc-remote procedure call demo
Slapped in the face: there are so many testers in a certain department of byte
惨遭打脸:字节某部门竟有这么多测试员
21 Days Learning Challenge (2) Use of Graphical Device Trees
[论文笔记] MapReduce: Simplified Data Processing on Large Clusters
Talking about data security governance and privacy computing
How to solve the error cannot update secondary snapshot during a parallel operation when the PostgreSQL database uses navicat to open the table structure?
Intersection of Boolean Operations in SuperMap iDesktop.Net - Repairing Complex Models with Topological Errors
2022 High-level installation, maintenance, and removal of exam questions mock exam question bank and online mock exam
[Paper Notes] MapReduce: Simplified Data Processing on Large Clusters
静态方法获取配置文件数据
Thinking (88): Use protobuf custom options for multi-version management of data
【软件测试】自动化测试之unittest框架
Likou - preorder traversal, inorder traversal, postorder traversal of binary tree
冒泡排序与快速排序
The Tanabata copywriting you want has been sorted out for you!