当前位置:网站首页>Mathematics - Properties of Summation Symbols
Mathematics - Properties of Summation Symbols
2022-08-05 03:25:00 【Code_LT】
1. single sum
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
Abbreviated above,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X Usually can be abbreviated as ∑ x i ,Indicates to accumulate all x i 可取的值 \sum_{x_i \in X}Usually can be abbreviated as \sum_{x_i},Indicates to accumulate allx_i可取的值 xi∈X∑Usually can be abbreviated as xi∑,Indicates to accumulate allxi可取的值
2. 多重求和
Take the double summation as an example:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = If it is expanded again, it will be omitted \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=If it is expanded again, it will be omitted i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=If it is expanded again, it will be omitted
2.1 性质1,The symbol order can be changed
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,When the range of a summation is limited by another variable,The commutative law does not apply,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)Can be seen as a function f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),A more general form is obtained:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
Keep the premise of interchangeability in mind:x,y,z的取值范围,相互没有影响.
2.1 性质2,Symbols can be found separately
有时候,为了求解的方便,We don't want functions f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)written as a whole,Instead, they are separated and evaluated separately.
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,zThe range of values should also satisfy each other without affecting each other,A simple proof can be done by expanding the calculation.
The advantage of the above properties is that,Complex problems can be divided into three parts and calculated separately,再求乘积.
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- 思考(八十八):使用 protobuf 自定义选项,做数据多版本管理
- 队列题目:最近的请求次数
- 【滤波跟踪】基于matlab无迹卡尔曼滤波惯性导航+DVL组合导航【含Matlab源码 2019期】
- 数学-求和符号的性质
- Question about #sql shell#, how to solve it?
- 21天学习挑战赛(2)图解设备树的使用
- (11) Metaclass
- word column notes
- Everyone in China said data, you need to focus on core characteristic is what?
- Confessing the era of digital transformation, Speed Cloud engraves a new starting point for value
猜你喜欢
Intersection of Boolean Operations in SuperMap iDesktop.Net - Repairing Complex Models with Topological Errors
Use Unity to publish APP to Hololens2 without pit tutorial
YYGH-13-Customer Service Center
Bubble Sort and Quick Sort
Web3.0 Dapps——通往未来金融世界的道路
如何在WordPress中添加特定类别的小工具
shell脚本:for循环与while循环
MRTK3 develops Hololens application - gesture drag, rotate, zoom object implementation
2022-08-04T17:50:58.296+0800 ERROR Announcer-3 io.airlift.discovery.client.Announcer appears after successful startup of presto
On governance and innovation, the 2022 OpenAtom Global Open Source Summit OpenAnolis sub-forum came to a successful conclusion
随机推荐
Use SuperMap iDesktopX data migration tool to migrate map documents and symbols
Use Unity to publish APP to Hololens2 without pit tutorial
Thinking (88): Use protobuf custom options for multi-version management of data
ffmpeg enumeration decoders, encoders analysis
undo problem
Tencent Cloud [Hiflow] New Era Automation Tool
Beidou no. 3 short message terminal high slope in open-pit mine monitoring programme
龙蜥社区第二届理事大会圆满召开!理事换届选举、4 位特约顾问加入
private封装
ffmpeg 枚举decoders, encoders 分析
调用阿里云oss和sms服务
Question about #sql shell#, how to solve it?
今年七夕,「情蔬」比礼物更有爱
2022-08-04 The sixth group, hidden from spring, study notes
思考(八十八):使用 protobuf 自定义选项,做数据多版本管理
Turn: Charles Handy: Who you are is more important than what you do
leetcode-每日一题1403. 非递增顺序的最小子序列(贪心)
How to simulate the background API call scene, very detailed!
Intersection of Boolean Operations in SuperMap iDesktop.Net - Repairing Complex Models with Topological Errors
Why is the pca component not associated