当前位置:网站首页>Mathematics - Properties of Summation Symbols
Mathematics - Properties of Summation Symbols
2022-08-05 03:25:00 【Code_LT】
1. single sum
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
Abbreviated above,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X Usually can be abbreviated as ∑ x i ,Indicates to accumulate all x i 可取的值 \sum_{x_i \in X}Usually can be abbreviated as \sum_{x_i},Indicates to accumulate allx_i可取的值 xi∈X∑Usually can be abbreviated as xi∑,Indicates to accumulate allxi可取的值
2. 多重求和
Take the double summation as an example:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = If it is expanded again, it will be omitted \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=If it is expanded again, it will be omitted i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=If it is expanded again, it will be omitted
2.1 性质1,The symbol order can be changed
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,When the range of a summation is limited by another variable,The commutative law does not apply,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)Can be seen as a function f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),A more general form is obtained:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
Keep the premise of interchangeability in mind:x,y,z的取值范围,相互没有影响.
2.1 性质2,Symbols can be found separately
有时候,为了求解的方便,We don't want functions f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)written as a whole,Instead, they are separated and evaluated separately.
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,zThe range of values should also satisfy each other without affecting each other,A simple proof can be done by expanding the calculation.
The advantage of the above properties is that,Complex problems can be divided into three parts and calculated separately,再求乘积.
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- MRTK3 develops Hololens application - gesture drag, rotate, zoom object implementation
- 21天学习挑战赛(2)图解设备树的使用
- 高项 02 信息系统项目管理基础
- 语法基础(变量、输入输出、表达式与顺序语句)
- STM32 uses stm32cubemx LL library series tutorial
- leetcode - a subtree of another tree
- 冰蝎V4.0攻击来袭,安全狗产品可全面检测
- Physical backup issues caused by soft links
- undo problem
- Getting Started with Kubernetes Networking
猜你喜欢

Use SuperMap iDesktopX data migration tool to migrate map documents and symbols

Simple description of linked list and simple implementation of code

Ice Scorpion V4.0 attack, security dog products can be fully detected

Why did they choose to fall in love with AI?
![[论文笔记] MapReduce: Simplified Data Processing on Large Clusters](/img/89/8adef42b0cfd154e6fa7205afaeade.png)
[论文笔记] MapReduce: Simplified Data Processing on Large Clusters

龙蜥社区第二届理事大会圆满召开!理事换届选举、4 位特约顾问加入

How to sort multiple fields and multiple values in sql statement

告白数字化转型时代,时速云镌刻价值新起点

.NET Application -- Helloworld (C#)

public static
List asList(T... a) What is the prototype?
随机推荐
毕设-基于SSM房屋租赁管理系统
You may use special comments to disable some warnings. Three ways to report errors
[Storage] Dawning Storage DS800-G35 ISCSI maps each LUN to the server
【 genius_platform software platform development 】 : seventy-six vs the preprocessor definitions written cow force!!!!!!!!!!(in the other groups conding personnel told so cow force configuration to can
Details such as compiling pretreatment
人人都在说的数据中台,你需要关注的核心特点是什么?
语法基础(变量、输入输出、表达式与顺序语句完成情况)
private package
Open Source License Description LGPL
龙蜥社区第二届理事大会圆满召开!理事换届选举、4 位特约顾问加入
word column notes
Use SuperMap iDesktopX data migration tool to migrate ArcGIS data
【Daily Training】1403. Minimum Subsequence in Non-Increasing Order
运维监控系统之Open-Falcon
Open-Falcon of operation and maintenance monitoring system
队列题目:最近的请求次数
How Jin Cang database correctness verification platform installation file
This year's Qixi Festival, "love vegetables" are more loving than gifts
Never put off till tomorrow what you can put - house lease management system based on the SSM
静态方法获取配置文件数据