当前位置:网站首页>Mathematics - Properties of Summation Symbols
Mathematics - Properties of Summation Symbols
2022-08-05 03:25:00 【Code_LT】
1. single sum
∑ i = 1 n f ( x i ) = f ( x 1 ) + f ( x 2 ) + ⋯ + f ( x n ) \sum_{i=1}^nf(x_i)=f(x_1)+f(x_2)+\cdots+f(x_n) i=1∑nf(xi)=f(x1)+f(x2)+⋯+f(xn)
1.1 性质1,提取公因式
若 h ( y , z ) h(y,z) h(y,z)的取值和x无关,则有:
∑ i = 1 n h ( y , z ) f ( x i ) = h ( y , z ) ∑ i = 1 n f ( x i ) \sum_{i=1}^nh(y,z)f(x_i)=h(y,z)\sum_{i=1}^nf(x_i) i=1∑nh(y,z)f(xi)=h(y,z)i=1∑nf(xi)
将变量 i i i写成 x i x_i xi更形象:
∑ x i h ( y , z ) f ( x i ) = h ( y , z ) ∑ x i f ( x i ) \sum_{x_i}h(y,z)f(x_i)=h(y,z)\sum_{x_i}f(x_i) xi∑h(y,z)f(xi)=h(y,z)xi∑f(xi)
Abbreviated above,实际上 x i ∈ X x_i \in X xi∈X, X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={ x1,x2,⋯,xn}:
∑ x i ∈ X Usually can be abbreviated as ∑ x i ,Indicates to accumulate all x i 可取的值 \sum_{x_i \in X}Usually can be abbreviated as \sum_{x_i},Indicates to accumulate allx_i可取的值 xi∈X∑Usually can be abbreviated as xi∑,Indicates to accumulate allxi可取的值
2. 多重求和
Take the double summation as an example:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = f ( x 1 ) ∑ j = 1 m h ( y j ) + f ( x 2 ) ∑ j = 1 m h ( y j ) + ⋯ + f ( x n ) ∑ j = 1 m h ( y j ) = If it is expanded again, it will be omitted \sum_{i=1}^n\sum_{j=1}^mf(x_i)h(y_j)=f(x_1)\sum_{j=1}^mh(y_j)+f(x_2)\sum_{j=1}^mh(y_j)+\cdots+f(x_n)\sum_{j=1}^mh(y_j)=If it is expanded again, it will be omitted i=1∑nj=1∑mf(xi)h(yj)=f(x1)j=1∑mh(yj)+f(x2)j=1∑mh(yj)+⋯+f(xn)j=1∑mh(yj)=If it is expanded again, it will be omitted
2.1 性质1,The symbol order can be changed
两重:
∑ i = 1 n ∑ j = 1 m f ( x i ) h ( y j ) = ∑ j = 1 m ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n{\color{red} \sum_{j=1}^m}f(x_i)h(y_j)={\color{red} \sum_{j=1}^m}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑mf(xi)h(yj)=j=1∑mi=1∑nf(xi)h(yj)
注意,When the range of a summation is limited by another variable,The commutative law does not apply,如:
∑ i = 1 n ∑ j = 1 i f ( x i ) h ( y j ) ≠ ∑ j = 1 i ∑ i = 1 n f ( x i ) h ( y j ) \sum_{i=1}^n\sum_{j=1}^{\color{red} i}f(x_i)h(y_j) {\color{red} \neq}\sum_{j=1}^ {\color{red} i}\sum_{i=1}^nf(x_i)h(y_j) i=1∑nj=1∑if(xi)h(yj)=j=1∑ii=1∑nf(xi)h(yj)
多重:
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ z k ∑ y j ∑ x i f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f_1(x_i)f_2(y_j)f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=zk∑yj∑xi∑f1(xi)f2(yj)f3(zk)
f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) f_1(x_i)f_2(y_j)f_3(z_k) f1(xi)f2(yj)f3(zk)Can be seen as a function f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3),A more general form is obtained:
∑ x i ∑ y j ∑ z k f ( x 1 , x 2 , x 3 ) = ∑ z k ∑ y j ∑ x i f ( x 1 , x 2 , x 3 ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f(x_1,x_2,x_3)=\sum_{z_k}\sum_{y_j}\sum_{x_i}f(x_1,x_2,x_3) xi∑yj∑zk∑f(x1,x2,x3)=zk∑yj∑xi∑f(x1,x2,x3)
Keep the premise of interchangeability in mind:x,y,z的取值范围,相互没有影响.
2.1 性质2,Symbols can be found separately
有时候,为了求解的方便,We don't want functions f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)written as a whole,Instead, they are separated and evaluated separately.
∑ x i ∑ y j ∑ z k f 1 ( x i ) f 2 ( y j ) f 3 ( z k ) = ∑ x i f 1 ( x i ) ∑ y j f 2 ( y j ) ∑ z k f 3 ( z k ) \sum_{x_i}\sum_{y_j}\sum_{z_k}f_1(x_i)f_2(y_j)f_3(z_k)=\sum_{x_i}f_1(x_i)\sum_{y_j}f_2(y_j)\sum_{z_k}f_3(z_k) xi∑yj∑zk∑f1(xi)f2(yj)f3(zk)=xi∑f1(xi)yj∑f2(yj)zk∑f3(zk)
x,y,zThe range of values should also satisfy each other without affecting each other,A simple proof can be done by expanding the calculation.
The advantage of the above properties is that,Complex problems can be divided into three parts and calculated separately,再求乘积.
( ∑ x i f 1 ( x i ) ) ( ∑ y j f 2 ( y j ) ) ( ∑ z k f 3 ( z k ) ) {\color{red}(\sum_{x_i}f_1(x_i))} {\color{green}(\sum_{y_j}f_2(y_j))} {\color{blue}(\sum_{z_k}f_3(z_k))} (xi∑f1(xi))(yj∑f2(yj))(zk∑f3(zk))
边栏推荐
- .NET应用程序--Helloworld(C#)
- The pit of std::string::find return value
- 毕设-基于SSM房屋租赁管理系统
- 结构体初解
- The problem of lack of dynamic library "libtinfo.so.5" in ksql application under UOS system
- Developing Hololens encountered The type or namespace name 'HandMeshVertex' could not be found..
- AI+PROTAC | dx/tx completes $5 million seed round
- 高项 02 信息系统项目管理基础
- 用CH341A烧录外挂Flash (W25Q16JV)
- Use SuperMap iDesktopX data migration tool to migrate ArcGIS data
猜你喜欢

dmp (dump) dump file
![Tencent Cloud [Hiflow] New Era Automation Tool](/img/ac/5c61424f22cd9fed74dcd529fdb6a4.png)
Tencent Cloud [Hiflow] New Era Automation Tool

Why did they choose to fall in love with AI?

YYGH-13-客服中心

Getting Started with Kubernetes Networking

21 Days Learning Challenge (2) Use of Graphical Device Trees

Bubble Sort and Quick Sort

【软件测试】自动化测试之unittest框架

2022-08-04 第六小组 瞒春 学习笔记

ASP.NET应用程序--Hello World
随机推荐
Android Practical Development - Kotlin Tutorial (Introduction - Login Function Implementation 3.3)
In 2022, you still can't "low code"?Data science can also play with Low-Code!
语法基础(变量、输入输出、表达式与顺序语句完成情况)
Intersection of Boolean Operations in SuperMap iDesktop.Net - Repairing Complex Models with Topological Errors
leetcode - symmetric binary tree
Everyone in China said data, you need to focus on core characteristic is what?
presto启动成功后出现2022-08-04T17:50:58.296+0800 ERROR Announcer-3 io.airlift.discovery.client.Announcer
Details such as compiling pretreatment
Call Alibaba Cloud oss and sms services
Queue Topic: Recent Requests
队列题目:最近的请求次数
The Tanabata copywriting you want has been sorted out for you!
ffmpeg -sources分析
YYGH-13-客服中心
ffmpeg 枚举decoders, encoders 分析
How to Add Category-Specific Widgets in WordPress
(11) Metaclass
In 2022, you still can't "low code"?Data science can also play with Low-Code!
.NET应用程序--Helloworld(C#)
[Qixi Festival] Romantic Tanabata, code teaser.Turn love into a gorgeous three-dimensional scene and surprise her (him)!(send code)