当前位置:网站首页>人体姿态估计的热图变成坐标点的两种方案
人体姿态估计的热图变成坐标点的两种方案
2022-07-01 21:47:00 【zouxiaolv】
# import torch.nn as nn
# import torch
#
# import torch.nn.functional as F
#
# class SimpleSelfAttention(nn.Module):
# def __init__(self, n_in:int, ks=1, sym=False):#, n_out:int):
# super().__init__()
# # self.conv = nn.Conv2d(n_in, n_in, kernel_size=1,
# # stride=1, padding=ks//2, bias=False)
# self.midchannel = n_in//4
# self.conv = nn.Conv2d(n_in, self.midchannel, ks, padding=ks//2, bias=False)
# self.conv1 = nn.Conv2d(n_in, 1, ks, padding=ks//2, bias=False)
# self.convexp = nn.Conv2d(self.midchannel, n_in, ks, padding=ks//2, bias=False)
# self.gamma = nn.Parameter(torch.tensor([0.]))
# self.sym = sym
# self.n_in = n_in
# def conv1d(self,ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False):
# "Create and initialize a `nn.Conv1d` layer with spectral normalization."
# conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias=bias)
# nn.init.kaiming_normal_(conv.weight)
# if bias: conv.bias.data.zero_()
# return conv
# def forward(self,x):
# if self.sym:
# # symmetry hack by https://github.com/mgrankin
# c = self.conv.weight.view(self.n_in,self.n_in)
# c = (c + c.t())/2
# self.conv.weight = c.view(self.n_in,self.n_in,1)
# size = x.size()
# # print(size)
# # x = x.view(*size[:2],-1) # (C,N)
# x_ = self.conv1(x)
# x_ = x_.view(size[2],-1) # (C,N)
# print('x_=',x_.shape)
# # changed the order of mutiplication to avoid O(N^2) complexity
# # (x*xT)*(W*x) instead of (x*(xT*(W*x)))
# convx = self.conv(x) # (C,C) * (C,N) = (C,N) => O(NC^2)
# print('convx=',convx.shape)
# # print(x.shape,x_.shape)
# xxT = torch.mm(x_,x_.permute(1,0).contiguous()) # (C,N) * (N,C) = (C,C) => O(NC^2)
# print('xxT=',xxT.shape)
# o = torch.matmul(xxT, convx) # (C,C) * (C,N) = (C,N) => O(NC^2)
# print('o=',o.shape)
# o = self.convexp(o)
# print('o1=', o.shape)
# o = self.gamma * o + x
# print('o2=', o.shape)
# return o.view(*size).contiguous()
#
# b = torch.rand(3,40,32,24)
# aaa = SimpleSelfAttention(40,1)
# aaa(b)
import torch.nn.functional as F
import torch
from torch.autograd import Variable
import torch.nn as nn
import numpy as np
import os
def makeGaussian(height, width, sigma=3, center=None):
""" Make a square gaussian kernel.
size is the length of a side of the square
sigma is full-width-half-maximum, which
can be thought of as an effective radius.
"""
x = np.arange(0, width, 1, float)
y = np.arange(0, height, 1, float)[:, np.newaxis]
if center is None:
x0 = width // 2
y0 = height // 2
else:
x0 = center[0]
y0 = center[1]
return 10 * np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / sigma ** 2)
def generate_hm(height, width, joints, maxlenght):
""" Generate a full Heap Map for every joints in an array
Args:
height : Wanted Height for the Heat Map
width : Wanted Width for the Heat Map
joints : Array of Joints 15*2
maxlenght : Lenght of the Bounding Box
"""
num_joints = joints.shape[0]
hm = np.zeros((num_joints, height, width), dtype=np.float32)
for i in range(num_joints):
s = int(np.sqrt(maxlenght) * maxlenght * 10 / 4096) + 3
hm[i, :, :] = makeGaussian(height, width, sigma=s, center=(joints[i, 0], joints[i, 1]))
return hm
def generate_3d_integral_preds_tensor_modify(heatmaps):
assert isinstance(heatmaps, torch.Tensor)
'''
heatmap: [B, numJoint, H, W]
'''
accu_x = heatmaps.sum(dim=2) # [1, 2, x_dim]
accu_y = heatmaps.sum(dim=3)
accu_x = F.softmax(accu_x, 2)
accu_y = F.softmax(accu_y, 2)
# accu_x = accu_x * torch.arange(heatmaps.shape[-1]).type(torch.cuda.FloatTensor)
# accu_y = accu_y * torch.arange(heatmaps.shape[-2]).type(torch.cuda.FloatTensor)
accu_x = accu_x * torch.arange(heatmaps.shape[-1]).float()
accu_y = accu_y * torch.arange(heatmaps.shape[-2]).float()
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
return accu_x, accu_y
if __name__ == '__main__':
x = torch.from_numpy(np.array([[1,2,3,4],[1,2,3,4]])).type(torch.float32)
GT_xy = np.array([[10, 10], [3, 8], [16, 18]])
heatmap = generate_hm(64, 32, GT_xy, 64) # [numJoint, 64, 64]
# heatmap = torch.unsqueeze(torch.from_numpy(heatmap), 0).cuda() # [1, numJoint, 64, 64]
heatmap = torch.unsqueeze(torch.from_numpy(heatmap), 0) # [1, numJoint, 64, 64]
x, y = generate_3d_integral_preds_tensor_modify(heatmaps=heatmap) #
print('x=',x)
print('y=',y)
print("")
print('***************************************')
import torch.nn.functional as F
import torch
from torch.autograd import Variable
import torch.nn as nn
import numpy as np
import os
def makeGaussian(height, width, sigma=3, center=None):
""" Make a square gaussian kernel.
size is the length of a side of the square
sigma is full-width-half-maximum, which
can be thought of as an effective radius.
"""
x = np.arange(0, width, 1, float)
y = np.arange(0, height, 1, float)[:, np.newaxis]
if center is None:
x0 = width // 2
y0 = height // 2
else:
x0 = center[0]
y0 = center[1]
return 10 * np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / sigma ** 2)
def generate_hm(height, width, joints, maxlenght):
""" Generate a full Heap Map for every joints in an array
Args:
height : Wanted Height for the Heat Map
width : Wanted Width for the Heat Map
joints : Array of Joints 15*2
maxlenght : Lenght of the Bounding Box
"""
num_joints = joints.shape[0]
hm = np.zeros((num_joints, height, width), dtype=np.float32)
for i in range(num_joints):
s = int(np.sqrt(maxlenght) * maxlenght * 10 / 4096) + 3
hm[i, :, :] = makeGaussian(height, width, sigma=s, center=(joints[i, 0], joints[i, 1]))
return hm
def generate_3d_integral_preds_tensor_init(heatmaps, num_joints, x_dim, y_dim):
assert isinstance(heatmaps, torch.Tensor)
'''
heatmap: [B, numJoint, H, W]
'''
heatmap = heatmaps.reshape((heatmaps.shape[0], 3, -1))
heatmap = F.softmax(heatmap, 2)
heatmaps = heatmaps.reshape((heatmaps.shape[0], num_joints, y_dim, x_dim))
accu_x = heatmaps.sum(dim=2) # [1, 2, x_dim]
accu_y = heatmaps.sum(dim=3)
accu_x = accu_x * torch.arange(x_dim).float()
accu_y = accu_y * torch.arange(y_dim).float()
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
return accu_x, accu_y
if __name__ == '__main__':
x = torch.from_numpy(np.array([[1, 2, 3, 4], [1, 2, 3, 4]])).type(torch.float32)
GT_xy = np.array([[10, 10], [3, 8], [16, 18]])
heatmap = generate_hm(64, 32, GT_xy, 64) # [numJoint, 64, 64]
heatmap = torch.unsqueeze(torch.from_numpy(heatmap), 0) # [1, numJoint, 64, 64]
x, y = generate_3d_integral_preds_tensor_init(heatmaps=heatmap, num_joints=3, x_dim=32, y_dim=64)
print('x***********=',x)#
print('y*************=',y)
边栏推荐
- 记录一次spark on yarn 任务报错 Operation category READ is not supported in state standby
- 【MySQL】explain的基本使用以及各列的作用
- Why must digital transformation strategies include continuous testing?
- 比较版本号[双指针截取自己想要的字串]
- 功能测试报告的编写
- keras训练的H5模型转tflite
- 从零开始学 MySQL —数据库和数据表操作
- 恶意软件反向关闭EDR的原理、测试和反制思考
- Copy ‘XXXX‘ to effectively final temp variable
- Mysql——》Innodb存储引擎的索引
猜你喜欢

Mysql——》Innodb存储引擎的索引

YOLOv5.5 调用本地摄像头

隐藏用户的创建和使用

The second anniversary of the three winged bird: the wings are getting richer and the take-off is just around the corner

Little p weekly Vol.11

Learning notes on futuretask source code of concurrent programming series

In the past 100 years, only 6 products have been approved, which is the "adjuvant" behind the vaccine competition

MySQL中对于事务的理解

MySQL中对于索引的理解
![快乐数[环类问题之快慢指针]](/img/37/5c94b9b062a54067a50918f94e61ea.png)
快乐数[环类问题之快慢指针]
随机推荐
twenty million two hundred and twenty thousand seven hundred and one
Object memory layout
为什么数字化转型战略必须包括持续测试?
LC669. 修剪二叉搜索树
Ida dynamic debugging apk
LC501. Mode in binary search tree
QT版本华睿相机的Demo程序实现
Clean up system cache and free memory under Linux
Redis配置与优化
spark analyze命令使用及其作用 map join broadcast join 广播join
EasyExcel 复杂数据导出
小红书Scheme跳转到指定页面
【MySQL】索引的创建、查看和删除
详解Kubernetes网络模型
[ecological partner] Kunpeng system engineer training
Several ways of writing main function in C
Medium pen test questions: flip the string, such as ABCD, print out DCBA
配置筛选机
13th Blue Bridge Cup group B national tournament
基准环路增益与相位裕度的测量