当前位置:网站首页>Special function calculator
Special function calculator
2022-06-27 16:23:00 【Hua Weiyun】
Special function calculator
Special functions are also called higher transcendental functions , Or mathematical physical function . Special functions are functions with specific properties , stay Mathematical analysis 、 Physical research 、 It is often used in engineering calculation , It also often appears in mathematical tables . Special function generally refers to the function that the solution of some kind of differential equation cannot be expressed in the finite form of elementary function , Such as Bessel (Bessel) function . Others are functions defined by certain forms of integration , Such as gamma (Gamma) function . There is also the so-called elliptic function from the perspective of the periodicity of the function . The development of computer and its software brings great convenience to the calculation of special functions . Here is a brief list of the following special functions : Normal distribution 、k Square distribution 、t Distribution 、F Distribution 、 Sine integral 、 Cosine integral 、 Exponential integral 、 The first kind of elliptic integral 、 The second kind of elliptic integral 、 error function 、 Bessel functions of integer order of the first kind 、 The second kind of Bessel functions of integer order 、 Variant of the first kind of Bessel functions of integer order 、 Variant of the second kind of Bessel functions of integer order 、 Gamma function 、 Incomplete gamma function 、 Incomplete Beta function . Finally, the use of a special function calculator is introduced .
(1) Normal distribution
A random variable x The normal distribution function of P(a,,x) Defined as :
.jpg)
among a It's the mean ,σ Is the standard deviation ,x Is the input variable value .
(2) Chi square distribution
A random variable k Square distribution function ( or
) as follows :

among x Is the input variable value ,n It's the degree of freedom .

(3)t Distribution function
A random variable t Distribution (Student- Distribution ) The function is defined as follows :

among n Is the degree of freedom ,t Is a random variable ,t≥ 0,P(0,n)=0,P(∞,n)=1.
(4)F Distribution function
A random variable F- The distribution function is defined as follows :

(5) Sine integral function
The sine integral function is defined as follows :

(6) Cosine integral function
The cosine integral function is defined as follows :

The formula for calculating the cosine integral is :

(7) Exponential integral
The exponential integral function is defined as follows :

The formula for calculating the exponential integral is :

(8) The first kind of elliptic integral
The first kind of elliptic integral is defined as :

(9) The second kind of elliptic integral
The second kind of elliptic integral function is defined as :

among :0≤k≤1.
(10) error function
The error function is defined as :

(11) Bessel functions of integer order of the first kind
Real variable x Bessel of integer order of the first kind (Bessel)) function Jn(x) Defined as :

among n Is a nonnegative integer , The integral expression is :

For the specific calculation method, refer to the relevant literature .
(12) The second kind of Bessel functions of integer order
Real variable x Bessel of the second order of integers (Bessel) function Yn(x) It has the following recurrence relation :

among x>0,n Is a nonnegative integer . For the specific calculation method, refer to the relevant literature .
(13) Variant of the first kind of Bessel function of integer order
Real variable x The first type of Bessel (Bessel) function In(x) Expressed as :

among n Is a nonnegative integer ,i Is an imaginary number ,Jn(ix) Is a pure virtual variable (ix) Bessel functions of the first kind . For the specific calculation method, refer to the relevant literature .
(14) Variant of the second kind of Bessel function of integer order
Real variable x The second kind of integer order Bessel (Bessel) function Kn(x) Expressed as :

among n Is a nonnegative integer ,i Is an imaginary number ,Jn(ix) Is a pure virtual variable (ix) Bessel functions of the first kind ,Yn(ix) Is a pure virtual variable (ix) Bessel function of the second kind .
For the specific calculation method, refer to the relevant literature .
(15) gamma (Gamma) function
Real variable x Gamma (Gamma) The function is defined as :

For the specific calculation method, refer to the relevant literature .
(16) Incomplete gamma function
The incomplete gamma function is defined as :

among a>0,x>0. For the specific calculation method, refer to the relevant literature .
(17) Incomplete Beta function
Incomplete Beta (Beta) The function is defined as :

among a,b>0,0≤x≤1,B(a,b) For beta function , namely :

For the specific calculation method, refer to the relevant literature .
reference
[1] Xu Shiliang Ed . C Common algorithm assemblies [M]. Beijing tsinghua university press ,1994 year 1 Yue di 1 edition , The first 442-486 page .
[2] Ning Zhi To write . Microsoft C Science and engineering tool library [M]. Beijing Xueyuan press ,1993 year 12 Yue di 1 edition , The first 116-126 page .
[3] [ beautiful ]W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery Writing . Fu Zuyun , Zhao Meina , Ding Yan Equal translation . C Language numerical algorithm program ( The second edition )[M]. Beijing Electronic industry press ,1995 year 10 Yue di 1 edition . The first 174-225 page .
Numerical Recipes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1988, 1992.
[4] 《 Mathematics Handbook 》 Writing group . Mathematics Handbook [M]. Beijing Higher Education Press ,1979 year 5 Yue di 1 edition , The first 587-648 page .
(18) A special function calculator
The following is the interface of a special function calculator , The software runs on Windows operating system , It has the calculation function of the above special functions . From the drop-down box, you can select the type of special function , Enter the corresponding parameters of the special function , Click on “ Calculation ” Button to output the calculation result , Display with red numbers . There are formulas corresponding to special functions in the lower part of the interface , Explain the meaning and limitations of input parameters .


This special function calculator supports 31 Functions , They are :
1> Normal distribution function
2>t- Distribution function
3>k- Distribution function
4>F- Distribution function
5> error function
6> Sine integral function
7> Cosine integral function
8> Exponential integral function
9> Elliptic integral function of the first kind
10> Elliptic integral function of the second kind
11> Bessel of integer order of the first kind (Bessel) function
12> The second kind of integer order Bessel (Bessel) function
13> Variant of the first kind of integer order Bessel (Bessel) function
14> Variant type II Bessel of integer order (Bessel) function
15> gamma (Gamma) function
16> Incomplete gamma (Gamma) function
17> Incomplete Beta (Beta) function
18> Exponential function
19> Sine function
20> cosine function
21> Tangent function
22> Cotangent function
23> Antisinusoidal function
24> Arccosine function
25> Arctangent function
26> Inverse cotangent function
27> Natural logarithm function
28> With 2 Base logarithmic function
29> With 10 Base logarithmic function
30> power function
31> Factorial n!
The special function calculator runs on MS Windows Under the operating system , Such as Windows XP、9x、2000、Windows10.
Special function calculation examples
Serial number | Function name | Input parameters | The result of the calculation is | contrast MATLAB |
1 | Normal distribution | a=0, σ=1, x=2.5 | 0.9937903 | normcdf(2.5,0,1)= 0.993790334674224 |
a=-1, σ=0.5, x=-10 | 0.0000000 | normcdf(-10,-1,0.5)= 9.740948918937211e-73 | ||
a=-1, σ=0.5, x=0 | 0.9772499 | normcdf(0,-1,0.5)= 0.977249868051821 | ||
2 | t- Distribution | n=1, t=0.5 | 0.2951701 | 2*tcdf(0.5,1)-1= 0.295167235300867 |
n=1, t=5 | 0.8743329 | 2*tcdf(5,1)-1= 0.874334083621997 | ||
n=2, t=0.5 | 0.33333 | 2*tcdf(0.5,2)-1= 0.333333333333333 | ||
n=4, t=5 | 0.9925096 | 2*tcdf(5,4)-1= 0.992509566118726 | ||
n=5, t=5 | 0.9958952 | 2*tcdf(5,5)-1= 0.995895284019947 | ||
3 | k Square distribution | n=1, t=0.5 | 0.5204999 | Chi2cdf(0.5,1)= 0.520499877813047 |
n=1, t=5 | 0.9746527 | Chi2cdf(5,1)= 0.974652681322532 | ||
n=2, t=0.5 | 0.2211992 | Chi2cdf(5,1)= 0.221199216928595 | ||
4 | F- Distribution | n1=2, n2=3, f=3.5 | 0.1643151 | 1.0-fcdf(3.5,2,3)= 0.164316767251550 |
n1=2, n2=3, f=9 | 0.0539944 | 1.0-fcdf(9,2,3)= 0.053994924715604 | ||
n1=5, n2=10, f=3.5 | 0.0434846 | 1.0-fcdf(3.5,5,10)= 0.043485040659111 | ||
n1=5, n2=10, f=9 | 0.0018223 | 1.0-fcdf(9,5,10)= 0.001822281898469 | ||
5 | error function | x=0 | 0.0000000 | 1-erfc(0)=0 |
x=0.25 | 0.2763264 | 1-erfc(0.25)= 0.276326390168237 | ||
x=2 | 0.9953223 | 1-erfc(2)= 0.995322265018953 | ||
6 | Sine integral | x=0.5 | 0.4931074 | |
x=4.5 | 1.6541404 | |||
7 | Cosine integral | x=0.5 | -0.1777841 | |
x=10.5 | -0.0782840 | |||
x=14.5 | 0.0655370 | |||
8 | Exponential integral | x=0.05 | -2.4678985 | |
x=1.25 | -0.1464134 | |||
x=-1.25 | -0.1464134 | |||
9 | Elliptic integral function of the first kind | k=0.5, f=0 | 0.0000000 | |
k=0.5, f=1.221730 | 1.2853000 | |||
k=1, f=0.349066 | 0.3563787 | |||
10 | Elliptic integral function of the second kind | k=0.5, f=0 | 0.0000000 | |
k=0.5, f=0.523599 | 0.5178822 | |||
k=1, f=1.570796 | 1.0000000 | |||
11 | Bessel functions of integer order of the first kind | n=0, x=0.05 | 0.9993751 | besselj(0,0.05)= 0.999375097649469 |
n=1, x=50 | -0.0975118 | besselj(1,50)= -0.097511828125175 | ||
n=5, x=5 | 0.2611405 | besselj(5,5)= 0.261140546120170 | ||
12 | The second kind of Bessel functions of integer order | n=0, x=0.05 | -1.9793110 | bessely(0,0.05)= -1.979311000817210 |
n=1, x=5 | 0.1478631 | bessely(1,5)= 0.147863143391227 | ||
n=2, x=0.5 | -5.4413708 | bessely(2,0.5)= -5.441370837174266 | ||
13 | Variant of the first kind of Bessel function of integer order | n=0, x=0.05 | 1.0006251 | besseli(0,0.05)= 1.000625097663032 |
n=1, x=5 | 24.3356418 | besseli(1,5)= 24.335642142450531 | ||
14 | Variant of the second kind of Bessel function of integer order | n=0, x=0.05 | 3.1142340 | besselk(0,0.05)= 3.114234029471990 |
n=1, x=0.5 | 1.6564411 | besselk(1,0.5)= 1.656441120003301 | ||
15 | Gamma function | x=0.5 | 1.7724541 | gamma(0.5)= 1.772453850905516 |
x=2.5 | 1.3293405 | gamma(2.5)= 1.329340388179137 | ||
16 | Incomplete gamma function | a=0.5, x=0.1 | 0.3452792 | gammainc(0.1,0.5)= 0.345279153981423 |
a=0.5, x=1 | 0.8427008 | gammainc(1,0.5)= 0.842700792949715 | ||
a=5, x=1 | 0.0036598 | gammainc(1,5)= 0.003659846827344 | ||
17 | Incomplete Beta function | a=0.5, b=0.5, x=0 | 0.0000000 | betainc(0,0.5,0.5)=0 |
a=0.5, b=5.0, x=0.2 | 0.8550738 | betainc(0.2,0.5,5)= 0.855072394595919 | ||
18 | Exponential function | x=1 | 2.7182818 | |
x=0.5 | 1.6487213 | |||
19 | Natural logarithm function | x=2 | 0.6931472 | |
20 | Factorial n! | n=5 | 120 |
Contact the author :[email protected]
Related articles
Multichannel signal analysis software system
Design of biomedical signal processing and analysis software system
Curve fitting software
Discrete wavelet transform is used for signal filtering
Multi dimensional feature parameter machine learning algorithm
Multi dimensional feature parameter machine learning software
Kohonen Self organizing feature mapping neural network ( Ring and spherical networks )
Three dimensional graphic display software of matrix
Picture browsing software tools
Principal component analysis (K-L Transformation ) And signal decomposition and synthesis ( wave filtering )
Calculation of sample entropy sequence of signal
Bispectral analysis of signal
Empirical mode decomposition of signal (EMD)
Hilbert (Hilbert) Calculation of instantaneous frequency of transformed signal
Random variable simulation with given probability distribution
Calculation of characteristic parameters of signal
Data distribution bitmap
Multi channel signal data compression storage
Basic algorithm and software of image processing
Signal power spectrum estimation
边栏推荐
- Centos8 PostgreSQL initialization error: initdb: error: invalid locale settings; check LANG and LC_* environment
- 3.3 one of the fixed number of cycles
- localDateTime类型的时间(2019-11-19T15:16:17) 用oracle的时间范围查询
- Julia constructs diagonal matrix
- 跨域图像的衡量新方式Style relevance:论文解读和代码实战
- [pygame Games] ce jeu "eat Everything" est fantastique? Tu manges tout? (avec code source gratuit)
- 鴻蒙發力!HDD杭州站·線下沙龍邀您共建生態
- 智慧风电 | 图扑软件数字孪生风机设备,3D 可视化智能运维
- Realize simple three-D cube automatic rotation
- PolarDB-X现在版本的开源兼容什么?mysql8?
猜你喜欢

Leetcode daily practice (main elements)

米哈游起诉五矿信托,后者曾被曝产品暴雷

Google Earth Engine(GEE)——Export. image. The difference and mixing of toasset/todrive, correctly export classification sample data to asset assets and references

Weekly snapshot of substrate technology 20220411

Hung - Mung! HDD Hangzhou station · salon hors ligne vous invite à construire l'écologie
#yyds干货盘点#简述chromeV8引擎垃圾回收

express

域名绑定动态IP最佳实践

带你认识图数据库性能和场景测试利器LDBC SNB
P.A.R.A 方法在思源的简易应用(亲测好用)
随机推荐
Yyds dry inventory brief chrome V8 engine garbage collection
Centos8 PostgreSQL initialization error: initdb: error: invalid locale settings; check LANG and LC_* environment
The two trump brand products of Langjiu are resonating in Chengdu, continuously driving the consumption wave of bottled liquor
正则匹配以什么开头、以什么结尾,以非什么开头,以非什么结尾
【Pygame小游戏】这款“吃掉一切”游戏简直奇葩了?通通都吃掉嘛?(附源码免费领)
What is the open source compatibility of the current version of polardb-x? mysql8?
Bit. Store: long bear market, stable stacking products may become the main theme
Nemo of pulseaudio (22)
QT5.5.1桌面版安装配置过程中的疑难杂症处理(配置ARM编译套件)
树莓派初步使用
QT5 之信号与槽机制(信号与槽的基本介绍)
National food safety risk assessment center: do not blindly and unilaterally pursue "zero addition" and "pure natural" food
锚文本大量丢失的问题
Bit.Store:熊市漫漫,稳定Staking产品或成主旋律
Event listening mechanism
事务的隔离级别详解
Luogu_ P1002 [noip2002 popularization group] crossing the river_ dp
Principle Comparison and analysis of mechanical hard disk and SSD solid state disk
Regular matching starts with what, ends with what, starts with what, and ends with what
NFT双币质押流动性挖矿dapp合约定制