当前位置:网站首页>20220621 Three Conjugates of Dual Quaternions
20220621 Three Conjugates of Dual Quaternions
2022-06-23 07:04:00 【What's my name】
Dual Quaternions. Yan-Bin Jia

If we view a dual quaternion σ = p + ϵ q \sigma=p+\epsilon q σ=p+ϵq as just an 8-tuple, its conjugate could be a vector generated from σ \sigma σ by flipping the signs of some of its elements. The dual quaternion indeed has three conjugates, the first of which is from the conjugate of a dual number:
σ ∙ = p − ϵ q . \sigma^{\bullet}=p-\epsilon q . σ∙=p−ϵq.Or, viewed as an 8-tuple, it is
σ ∙ = ( p 0 , p 1 , p 2 , p 3 , − q 0 , − q 1 , − q 2 , − q 3 ) \sigma^{\bullet}=\left(p_{0}, p_{1}, p_{2}, p_{3},-q_{0},-q_{1},-q_{2},-q_{3}\right) σ∙=(p0,p1,p2,p3,−q0,−q1,−q2,−q3)In this sense, the product of σ \sigma σ with σ ∙ \sigma^{\bullet} σ∙ ought to be treated as an inner product to yield a scalar. This is not the case, however, if under the multiplication rule (14), for we have
σ ⊗ σ ∙ = ( p + ϵ q ) ( p − ϵ q ) = p p + ϵ ( q p − p q ) \begin{aligned} \sigma \otimes \sigma^{\bullet} &=(p+\epsilon q)(p-\epsilon q) \\ &=p p+\epsilon(q p-p q) \end{aligned} σ⊗σ∙=(p+ϵq)(p−ϵq)=pp+ϵ(qp−pq)Generally, the quaternion product p p p p pp is not a scalar, and q p ≠ p q q p \neq p q qp=pq following the non-commutativity of quaternion multiplication. The first conjugate is seldom used other than for deriving the third conjugate to be introduced shortly.
The second conjugate of σ \sigma σ follows from the classical quaternion conjugation:
σ ∗ = p ∗ + ϵ q ∗ \sigma^{*}=p^{*}+\epsilon q^{*} σ∗=p∗+ϵq∗
where p ∗ p^{*} p∗ and q ∗ q^{*} q∗ are the conjugates of the quaternions p p p and q q q, respectively. The conjugate σ ∗ \sigma^{*} σ∗ can also be viewed as an 8-tuple:
σ ∗ = ( p 0 , − p 1 , − p 2 , − p 3 , q 0 , − q 1 , − q 2 , − q 3 ) . \sigma^{*}=\left(p_{0},-p_{1},-p_{2},-p_{3}, q_{0},-q_{1},-q_{2},-q_{3}\right) . σ∗=(p0,−p1,−p2,−p3,q0,−q1,−q2,−q3).
Let us calculate the product of σ \sigma σ with σ ∗ \sigma^{*} σ∗ below:
σ ⊗ σ ∗ = ( p + ϵ q ) ( p ∗ + ϵ q ∗ ) = p p ∗ + ϵ ( p q ∗ + q p ∗ ) = ( p 0 2 + p 1 2 + p 2 2 + p 3 2 ) + 2 ϵ ( p 0 q 0 + p 1 q 1 + p 2 q 2 + p 3 q 3 ) = ∥ p ∥ 2 + 2 ϵ ( p 0 q 0 + p ⋅ q ) \begin{aligned} \sigma \otimes \sigma^{*} &=(p+\epsilon q)\left(p^{*}+\epsilon q^{*}\right) \\ &=p p^{*}+\epsilon\left(p q^{*}+q p^{*}\right) \\ &=\left(p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+2 \epsilon\left(p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right) \\ &=\|p\|^{2}+2 \epsilon\left(p_{0} q_{0}+\boldsymbol{p} \cdot \boldsymbol{q}\right) \end{aligned} σ⊗σ∗=(p+ϵq)(p∗+ϵq∗)=pp∗+ϵ(pq∗+qp∗)=(p02+p12+p22+p32)+2ϵ(p0q0+p1q1+p2q2+p3q3)=∥p∥2+2ϵ(p0q0+p⋅q)
It is a dual scalar but not a scalar unless p 0 q 0 + p ⋅ q = 0 p_{0} q_{0}+\boldsymbol{p} \cdot \boldsymbol{q}=0 p0q0+p⋅q=0, that is, unless p p p and q q q are orthogonal 4-tuples.
The third conjugate of σ \sigma σ combines the first two conjugation operators:
σ ⋄ = p ∗ − ϵ q ∗ \sigma^{\diamond}=p^{*}-\epsilon q^{*} σ⋄=p∗−ϵq∗
As an 8-tuple, it takes the form
σ ∘ = ( p 0 , − p 1 , − p 2 , − p 3 , − q 0 , q 1 , q 2 , q 3 ) . \sigma^{\circ}=\left(p_{0},-p_{1},-p_{2},-p_{3},-q_{0}, q_{1}, q_{2}, q_{3}\right) . σ∘=(p0,−p1,−p2,−p3,−q0,q1,q2,q3).
Similarly, we calculate the product of σ \sigma σ with the above conjugate:
σ ⊗ σ ⋄ = ( p + ϵ q ) ( p ∗ − ϵ q ∗ ) = p p ∗ + ϵ ( q p ∗ − p q ∗ ) . \begin{aligned} \sigma \otimes \sigma^{\diamond} &=(p+\epsilon q)\left(p^{*}-\epsilon q^{*}\right) \\ &=p p^{*}+\epsilon\left(q p^{*}-p q^{*}\right) . \end{aligned} σ⊗σ⋄=(p+ϵq)(p∗−ϵq∗)=pp∗+ϵ(qp∗−pq∗). The product is a dual quaternion whose real part is a scalar and dual part is a vector.
For each of the three introduced conjugates, the conjugate of the conjugate of σ \sigma σ is σ \sigma σ itself. The conjugate of the product of dual quaternions equals the product of the individual conjugates of these dual quaternions in the reverse order. This is established below for all three conjugates:
( σ 1 ⊗ σ 2 ) ∙ = ( p 1 p 2 + ϵ ( p 1 q 2 + q 1 p 2 ) ) ∙ = p 1 p 2 − ϵ ( p 1 q 2 + q 1 p 2 ) = ( p 1 − ϵ q 1 ) ( p 2 − ϵ q 2 ) = σ 1 ∙ ⊗ σ 2 ∙ ; \begin{aligned} \left(\sigma_{1} \otimes \sigma_{2}\right)^{\bullet}&=\left(p_{1} p_{2}+\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right)\right)^{\bullet} \\ &=p_{1} p_{2}-\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right) \\ &=\left(p_{1}-\epsilon q_{1}\right)\left(p_{2}-\epsilon q_{2}\right) \\ &=\sigma_{1}^{\bullet} \otimes \sigma_{2}^{\bullet} ; \end{aligned} (σ1⊗σ2)∙=(p1p2+ϵ(p1q2+q1p2))∙=p1p2−ϵ(p1q2+q1p2)=(p1−ϵq1)(p2−ϵq2)=σ1∙⊗σ2∙;
( σ 1 ⊗ σ 2 ) ∗ = ( p 1 p 2 + ϵ ( p 1 q 2 + q 1 p 2 ) ) ∗ = ( p 1 p 2 ) ∗ + ϵ ( p 1 q 2 + q 1 p 2 ) ∗ = ( p 1 p 2 ) ∗ + ϵ ( ( p 1 q 2 ) ∗ + ( q 1 p 2 ) ∗ ) = p 2 ∗ p 1 ∗ + ϵ ( q 2 ∗ p 1 ∗ + p 2 ∗ q 1 ∗ ) = ( p 2 ∗ + ϵ q 2 ∗ ) ( p 1 ∗ + ϵ q 1 ∗ ) = σ 2 ∗ ⊗ σ 1 ∗ \begin{aligned}\left(\sigma_{1} \otimes \sigma_{2}\right)^{*}&=\left(p_{1} p_{2}+\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right)\right)^{*}\\ &=\left(p_{1} p_{2}\right)^{*}+\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right)^{*}\\ &=\left(p_{1} p_{2}\right)^{*}+\epsilon\left(\left(p_{1} q_{2}\right)^{*}+\left(q_{1} p_{2}\right)^{*}\right)\\ &=p_{2}^{*} p_{1}^{*}+\epsilon\left(q_{2}^{*} p_{1}^{*}+p_{2}^{*} q_{1}^{*}\right)\\ &=\left(p_{2}^{*}+\epsilon q_{2}^{*}\right)\left(p_{1}^{*}+\epsilon q_{1}^{*}\right)\\ &=\sigma_{2}^{*} \otimes \sigma_{1}^{*} \end{aligned} (σ1⊗σ2)∗=(p1p2+ϵ(p1q2+q1p2))∗=(p1p2)∗+ϵ(p1q2+q1p2)∗=(p1p2)∗+ϵ((p1q2)∗+(q1p2)∗)=p2∗p1∗+ϵ(q2∗p1∗+p2∗q1∗)=(p2∗+ϵq2∗)(p1∗+ϵq1∗)=σ2∗⊗σ1∗
( σ 1 ⊗ σ 2 ) ⋄ = ( p 1 p 2 + ϵ ( p 1 q 2 + q 1 p 2 ) ) ⋄ = ( p 1 p 2 ) ∗ − ϵ ( p 1 q 2 + q 1 p 2 ) ∗ = ( p 1 p 2 ) ∗ − ϵ ( ( p 1 q 2 ) ∗ + ( q 1 p 2 ) ∗ ) = p 2 ∗ p 1 ∗ − ϵ ( q 2 ∗ p 1 ∗ + p 2 ∗ q 1 ∗ ) = ( p 2 ∗ − ϵ q 2 ∗ ) ( p 1 ∗ − ϵ q 1 ∗ ) = σ 2 ∘ ⊗ σ 1 ∘ \begin{aligned} \left(\sigma_{1} \otimes \sigma_{2}\right)^{\diamond}&=\left(p_{1} p_{2}+\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right)\right)^{\diamond}\\&=\left(p_{1} p_{2}\right)^{*}-\epsilon\left(p_{1} q_{2}+q_{1} p_{2}\right)^{*}\\&=\left(p_{1} p_{2}\right)^{*}-\epsilon\left(\left(p_{1} q_{2}\right)^{*}+\left(q_{1} p_{2}\right)^{*}\right)\\&=p_{2}^{*} p_{1}^{*}-\epsilon\left(q_{2}^{*} p_{1}^{*}+p_{2}^{*} q_{1}^{*}\right)\\&=\left(p_{2}^{*}-\epsilon q_{2}^{*}\right)\left(p_{1}^{*}-\epsilon q_{1}^{*}\right)\\&=\sigma_{2}^{\circ} \otimes \sigma_{1}^{\circ} \end{aligned} (σ1⊗σ2)⋄=(p1p2+ϵ(p1q2+q1p2))⋄=(p1p2)∗−ϵ(p1q2+q1p2)∗=(p1p2)∗−ϵ((p1q2)∗+(q1p2)∗)=p2∗p1∗−ϵ(q2∗p1∗+p2∗q1∗)=(p2∗−ϵq2∗)(p1∗−ϵq1∗)=σ2∘⊗σ1∘.
边栏推荐
- Some difficulties in making web pages
- 301. 删除无效的括号
- 网页制作存在的一些难点
- Badly placed()'s problem
- 产品-Axure9(英文版),原型设计 制作下拉二级菜单
- [STL] summary of stack and queue usage of container adapter
- 306. 累加数
- Too much if logic in JS, common optimization
- cmder
- Wechat applet - Global Monitoring of certain attribute changes of GlobalData, such as monitoring of network state switching
猜你喜欢
随机推荐
TP6 安装拓展
【项目实训】线形组件的细节
The illustration shows three handshakes and four waves. Xiaobai can understand them
数据在内存中的存储方式(C语言)
Xiaobai must see in investment and wealth management: illustrated fund buying and selling rules
【项目实训】多段线扩充为平行线
【项目实训10】箭头的绘制
406-双指针(27. 移除元素、977.有序数组的平方、15. 三数之和、18. 四数之和)
MySQL MVCC多版本并发控制
WPF Command指令和INotifyPropertyChanged
994. rotten oranges - non recursive method
DQL、DML、DDL、DCL的概念与区别
2121. 相同元素的间隔之和-哈希表法
746. 使用最小花费爬楼梯-动态规划
Run typescript code directly using TS node
Too much if logic in JS, common optimization
在金融行业做数据产品经理是什么体验
【Qt】基础学习笔记
Copy and paste of idea without escape
XXL-SSO 实现SSO单点登录








