当前位置:网站首页>Image segmentation - improved network structure
Image segmentation - improved network structure
2022-06-23 08:06:00 【Deer holding grass】
Image segmentation - Improve the network structure
1. How to find questions worth asking ?
- Low model accuracy
- How low is the accuracy of the model
- The accuracy of a certain class of samples is low
Near the edge of the picture mask High deletion rate ; Specific shapes such as rectangles mask Poor shape prediction ; The class with less uneven samples in the training set has low accuracy
- There are structural problems in the forecast :mask Low recall rate ; The segmentation accuracy is improved , The classification accuracy is reduced

Example 1:
- The recall rate of positive samples is very low ( see notebook、model_visulize.ipynb)
- Multi task learning (Muti-Task)
- Modify the code 、 Running experiments

Example 2:
problem : Whether there is a better network structure ?
Way 1: Increase network volume , turn up neuron Number .going deeper
Way 2: Better network architecture :Vanilla Unet, SCSE Unet,Attention Unet
2. Various tasks
- Classification task :encorder+classifier layer(1 layer )
- Split task :encorder+decoder
encoder/backbone:
resnet family :resnet series ,resnext series ,se-resnet series ,se-resnext series
efficientnet family :b0,b1,b2,……,b7
other :inception series ,vgg series ,densenet series 
efficientnet series
- More efficient ( The network size is relatively small )
- Higher accuracy

3. Multi-stage Training program
By freezing - Partial network (freeze), Play a fine adjustment :
- The migration study
- Small amount of business data
- It's noisy
Multiple picture sizes :
- First in 128*128 Training on small pictures
- Finally, by increasing the image size finetuning
Use different loss Conduct finetuning
- First use BCE Training
- Last use lovasz loss/Dice loss, Fine tune a few EPOCH
边栏推荐
- GTEST死亡测试
- unity 音频可视化方案
- 看了5本书,我总结出财富自由的这些理论
- MIT CMS. 300 session 12 – identity construction Part 2
- MySQL小册子笔记 5 InnoDB 记录存储结构
- Ad object of Active Directory
- Matlab random volatility SV, GARCH using MCMC Markov chain Monte Carlo method to analyze exchange rate time series
- 快速排序 + 冒泡排序 + 插入排序 + 选择排序
- socket编程(多进程)
- 浅谈ThreadLocal和InheritableThreadLocal,源码解析
猜你喜欢

Apache Solr 任意文件读取复现

通过端口查文件

qt 不规则图形 消除锯齿

openni.utils.OpenNIError: (OniStatus.ONI_STATUS_ERROR, b‘DeviceOpen using default: no devices found‘

ArcMap batch delete points closer

MIT CMS.300 Session 12 – IDENTITY CONSTRUCTION 虚拟世界中身份认同的建立 part 2

The sandbox has reached a cooperation with football player to bring popular football cartoons and animation into the metauniverse

openni. utils. OpenNIError: (OniStatus.ONI_STATUS_ERROR, b‘DeviceOpen using default: no devices found‘

Commonly used bypass methods for SQL injection -ctf

vtk.js鼠标左键滑动改变窗位和窗宽
随机推荐
openvino系列 18. 通过OpenVINO和OpenCV实现实时的物体识别(RTSP,USB视频读取以及视频文件读取)
Quick sort + bubble sort + insert sort + select sort
Create an orderly sequence table and perform the following operations: 1 Insert element x into the table and keep it in order; 2. find the element with the value of X, and delete it if found; 3. outpu
Take you to tiktok. That's it
启动appium
View the file once a second and send the result of the last line of the file to the syslog server
domain controller
openni. utils. OpenNIError: (OniStatus.ONI_STATUS_ERROR, b‘DeviceOpen using default: no devices found‘
QT irregular shape antialiasing
【Try to Hack】ip地址
Query on the performance of multi table view in MySQL
黄蓉真的存在吗?
GTEST death test
Tri rapide + Tri par bulle + Tri par insertion + Tri par sélection
socket编程(多进程)
firewalld 配置文件的位置
MySQL慢查询记录
imperva-查找正则匹配超时的方法
Matlab random volatility SV, GARCH using MCMC Markov chain Monte Carlo method to analyze exchange rate time series
MIT CMS.300 Session 12 – IDENTITY CONSTRUCTION 虚拟世界中身份认同的建立 part 2